Advancing space-based gravitational wave astronomy: Rapid parameter estimation via normalizing flows

被引:10
|
作者
Du, Minghui [1 ]
Liang, Bo [2 ,3 ,5 ]
Wang, He [4 ,5 ]
Xu, Peng [1 ,2 ,5 ,6 ]
Luo, Ziren [1 ,2 ,5 ]
Wu, Yueliang [2 ,4 ,7 ,8 ]
机构
[1] Chinese Acad Sci, Inst Mech, Ctr Gravitat Wave Expt, Natl Micrograv Lab, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Key Lab Gravitat Wave Precis Measurement Zhejiang, Hangzhou 310024, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
[4] Univ Chinese Acad Sci, Int Ctr Theoret Phys Asia Pacific, Beijing 100049, Peoples R China
[5] Univ Chinese Acad Sci, Taiji Lab Gravitat Wave Universe Beijing Hangzhou, Beijing 100049, Peoples R China
[6] Lanzhou Univ, Lanzhou Ctr Theoret Phys, Lanzhou 730000, Peoples R China
[7] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
[8] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Taiji program; gravitational wave detection; parameter estimation; machine learning;
D O I
10.1007/s11433-023-2270-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Gravitational wave (GW) astronomy is witnessing a transformative shift from terrestrial to space-based detection, with missions like Taiji at the forefront. While the transition brings unprecedented opportunities for exploring massive black hole binaries (MBHBs), it also imposes complex challenges in data analysis, particularly in parameter estimation amidst confusion noise. Addressing this gap, we utilize scalable normalizing flow models to achieve rapid and accurate inference within the Taiji environment. Innovatively, our approach simplifies the data's complexity, employs a transformation mapping to overcome the year-period time-dependent response function, and unveils additional multimodality in the arrival time parameter. Our method estimates MBHBs several orders of magnitude faster than conventional techniques, maintaining high accuracy even in complex backgrounds. These findings significantly enhance the efficiency of GW data analysis, paving the way for rapid detection and alerting systems and enriching our ability to explore the universe through space-based GW observation.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A Review of Orbital Mechanics for Space-Based Gravitational Wave Observatories
    Qiao, Dong
    Jia, Feida
    Li, Xiangyu
    Zhou, Xingyu
    SPACE: SCIENCE & TECHNOLOGY, 2023, 3
  • [22] The LISA mission: A space-based gravitational-wave observatory
    Sala, Lorenzo
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2025, 48 (03):
  • [23] Status of Space-based Gravitational-wave Observatories (SGOs)
    Livas, Jeffrey C.
    13TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS, TAUP 2013, 2015, 61 : 648 - 653
  • [24] Gravitational-wave parameter estimation with autoregressive neural network flows
    Green, Stephen R.
    Simpson, Christine
    Gair, Jonathan
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [25] Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy
    Hunter Gabbard
    Chris Messenger
    Ik Siong Heng
    Francesco Tonolini
    Roderick Murray-Smith
    Nature Physics, 2022, 18 : 112 - 117
  • [26] Clock synchronization and light-travel-time estimation for space-based gravitational-wave detectors
    Reinhardt, Jan Niklas
    Hartwig, Olaf
    Heinzel, Gerhard
    CLASSICAL AND QUANTUM GRAVITY, 2025, 42 (05)
  • [27] Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy
    Gabbard, Hunter
    Messenger, Chris
    Heng, Ik Siong
    Tonolini, Francesco
    Murray-Smith, Roderick
    NATURE PHYSICS, 2022, 18 (01) : 112 - +
  • [28] Testing Lorentz symmetry with space-based gravitational-wave detectors
    Qin, Cheng-Gang
    Ke, Jun
    Li, Qin
    Chen, Ya-Fen
    Luo, Jie
    Tan, Yu-Jie
    Shao, Cheng-Gang
    CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (20)
  • [29] Rapid parameter estimation for merging massive black hole binaries using continuous normalizing flows
    Liang, Bo
    Du, Minghui
    Wang, He
    Xu, Yuxiang
    Liu, Chang
    Wei, Xiaotong
    Xu, Peng
    Qiang, Li-e
    Luo, Ziren
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (04):
  • [30] Probing anisotropies of gravitational-wave backgrounds with a space-based interferometer
    Taruya, Atsushi
    Laser Interferometer Space Antenna, 2006, 873 : 494 - 497