Advancing space-based gravitational wave astronomy: Rapid parameter estimation via normalizing flows

被引:10
|
作者
Du, Minghui [1 ]
Liang, Bo [2 ,3 ,5 ]
Wang, He [4 ,5 ]
Xu, Peng [1 ,2 ,5 ,6 ]
Luo, Ziren [1 ,2 ,5 ]
Wu, Yueliang [2 ,4 ,7 ,8 ]
机构
[1] Chinese Acad Sci, Inst Mech, Ctr Gravitat Wave Expt, Natl Micrograv Lab, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Key Lab Gravitat Wave Precis Measurement Zhejiang, Hangzhou 310024, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
[4] Univ Chinese Acad Sci, Int Ctr Theoret Phys Asia Pacific, Beijing 100049, Peoples R China
[5] Univ Chinese Acad Sci, Taiji Lab Gravitat Wave Universe Beijing Hangzhou, Beijing 100049, Peoples R China
[6] Lanzhou Univ, Lanzhou Ctr Theoret Phys, Lanzhou 730000, Peoples R China
[7] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
[8] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Taiji program; gravitational wave detection; parameter estimation; machine learning;
D O I
10.1007/s11433-023-2270-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Gravitational wave (GW) astronomy is witnessing a transformative shift from terrestrial to space-based detection, with missions like Taiji at the forefront. While the transition brings unprecedented opportunities for exploring massive black hole binaries (MBHBs), it also imposes complex challenges in data analysis, particularly in parameter estimation amidst confusion noise. Addressing this gap, we utilize scalable normalizing flow models to achieve rapid and accurate inference within the Taiji environment. Innovatively, our approach simplifies the data's complexity, employs a transformation mapping to overcome the year-period time-dependent response function, and unveils additional multimodality in the arrival time parameter. Our method estimates MBHBs several orders of magnitude faster than conventional techniques, maintaining high accuracy even in complex backgrounds. These findings significantly enhance the efficiency of GW data analysis, paving the way for rapid detection and alerting systems and enriching our ability to explore the universe through space-based GW observation.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Cosmology with space-based gravitational-wave detectors: Dark energy and primordial gravitational waves
    Nishizawa, Atsushi
    Yagi, Kent
    Taruya, Atsushi
    Tanaka, Takahiro
    PHYSICAL REVIEW D, 2012, 85 (04)
  • [42] Synergy between ground- and space-based gravitational-wave detectors for estimation of binary coalescence parameters
    Nair, Remya
    Jhingan, Sanjay
    Tanaka, Takahiro
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (05):
  • [43] Parameter estimation for strong phase transitions in supranuclear matter using gravitational-wave astronomy
    Pang, Peter T. H.
    Dietrich, Tim
    Tews, Ingo
    Van Den Broeck, Chris
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [44] Subtraction of the confusion foreground and parameter uncertainty of resolvable galactic binaries on the networks of space-based gravitational-wave detectors
    Wu, Jie
    Li, Jin
    PHYSICAL REVIEW D, 2023, 108 (12)
  • [45] Space-based gravitational wave signal detection and extraction with deep neural network
    Zhao, Tianyu
    Lyu, Ruoxi
    Wang, He
    Cao, Zhoujian
    Ren, Zhixiang
    COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [46] Probing the axion-photon coupling with space-based gravitational wave detectors
    Gue, Jordan
    Hees, Aurelien
    Wolf, Peter
    CLASSICAL AND QUANTUM GRAVITY, 2025, 42 (05)
  • [47] Laser intensity noise evaluation system for space-based gravitational wave detection
    Li Fan
    Wang Jia-Wei
    Gao Zi-Chao
    Li Jian-Bo
    An Bing-Nan
    Li Rui-Xin
    Bai Yu
    Yin Wang-Bao
    Tian Long
    Zheng Yao-Hui
    ACTA PHYSICA SINICA, 2022, 71 (20)
  • [48] SPACE-BASED GRAVITATIONAL WAVE OBSERVATIONS IN THE MID-BAND FREQUENCY REGION
    Tinto, Massimo
    ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2020, 13 (02) : 167 - 176
  • [49] Challenges in space-based gravitational wave data analysis and applications of artificial intelligence
    Wang, He
    Du, MingHui
    Xu, Peng
    Zhou, Yu-Feng
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2024, 54 (07)
  • [50] Dual-Loop Charge Management for Space-Based Gravitational Wave Detection
    Yu, Tao
    Zhao, Zihan
    Chen, Yongkun
    Li, Huadong
    Wang, Zhi
    AEROSPACE, 2025, 12 (02)