Rapid parameter estimation for merging massive black hole binaries using continuous normalizing flows

被引:0
|
作者
Liang, Bo [1 ,2 ,3 ,4 ]
Du, Minghui [1 ]
Wang, He [4 ,6 ]
Xu, Yuxiang [1 ,2 ,3 ,4 ]
Liu, Chang [7 ]
Wei, Xiaotong [1 ]
Xu, Peng [1 ,2 ,4 ,5 ]
Qiang, Li-e [7 ]
Luo, Ziren [1 ,2 ,4 ,6 ]
机构
[1] Chinese Acad Sci, Inst Mech, Ctr Gravitat Wave Expt, Natl Micrograv Lab, Beijing 100190, Peoples R China
[2] UCAS, Hangzhou Inst Adv Study, Key Lab Gravitat Wave Precis Measurement Zhejiang, Hangzhou 310024, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
[4] Univ Chinese Acad Sci UCAS, Taiji Lab Gravitat Wave Univ Beijing Hangzhou, Beijing 100049, Peoples R China
[5] Lanzhou Univ, Lanzhou Ctr Theoret Phys, Lanzhou 730000, Peoples R China
[6] Univ Chinese Acad Sci UCAS, Int Ctr Theoret Phys Asia Pacific ICTP AP, Beijing 100049, Peoples R China
[7] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2024年 / 5卷 / 04期
关键词
gravitational wave; massive black hole binaries; continuous normalizing flows; flow matching; COUNTERPARTS; SPACE; LISA;
D O I
10.1088/2632-2153/ad8da9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting the coalescences of massive black hole binaries (MBHBs) is one of the primary targets for space-based gravitational wave observatories such as laser interferometer space antenna, Taiji, and Tianqin. The fast and accurate parameter estimation of merging MBHBs is of great significance for the global fitting of all resolvable sources, as well as the astrophysical interpretation of gravitational wave signals. However, such analyses usually entail significant computational costs. To address these challenges, inspired by the latest progress in generative models, we explore the application of continuous normalizing flows (CNFs) on the parameter estimation of MBHBs. Specifically, we employ linear interpolation and trig interpolation methods to construct transport paths for training CNFs. Additionally, we creatively introduce a parameter transformation method based on the symmetry in the detector's response function. This transformation is integrated within CNFs, allowing us to train the model using a simplified dataset, and then perform parameter estimation on more general data, hence also acting as a crucial factor in improving the training speed. In conclusion, for the first time, within a comprehensive and reasonable parameter range, we have achieved a complete and unbiased 11-dimensional rapid inference for MBHBs in the presence of astrophysical confusion noise using CNFs. In the experiments based on simulated data, our model produces posterior distributions comparable to those obtained by nested sampling.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] LISA: Parameter estimation for massive black hole binaries
    Vecchio, A
    Cutler, C
    LASER INTERFEROMETER SPACE ANTENNA, 1998, 456 : 101 - 109
  • [2] Bayesian parameter estimation of massive black hole binaries with TianQin and LISA
    Gao, Jie
    Hu, Yi-Ming
    Li, En-Kun
    Zhang, Jian-dong
    Mei, Jianwei
    PHYSICAL REVIEW D, 2025, 111 (02)
  • [3] MODELING FLOWS AROUND MERGING BLACK HOLE BINARIES
    van Meter, James R.
    Wise, John H.
    Miller, M. Coleman
    Reynolds, Christopher S.
    Centrella, Joan
    Baker, John G.
    Boggs, William D.
    Kelly, Bernard J.
    McWilliams, Sean T.
    ASTROPHYSICAL JOURNAL LETTERS, 2010, 711 (02) : L89 - L93
  • [4] Resonant trapping of stars by merging massive black hole binaries
    Seto, Naoki
    Muto, Takayuki
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 415 (04) : 3824 - 3830
  • [5] Effect of data gaps on the detectability and parameter estimation of massive black hole binaries with LISA
    Dey, Kallol
    Karnesis, Nikolaos
    Toubiana, Alexandre
    Barausse, Enrico
    Korsakova, Natalia
    Baghi, Quentin
    Basak, Soumen
    PHYSICAL REVIEW D, 2021, 104 (04)
  • [6] Parameter Inference for Coalescing Massive Black Hole Binaries Using Deep Learning
    Ruan, Wenhong
    Wang, He
    Liu, Chang
    Guo, Zongkuan
    UNIVERSE, 2023, 9 (09)
  • [7] Strong gravitational lensing and localization of merging massive black hole binaries with LISA
    Seto, N
    PHYSICAL REVIEW D, 2004, 69 (02):
  • [8] Parameter estimation of coalescing supermassive black hole binaries with LISA
    Arun, K. G.
    PHYSICAL REVIEW D, 2006, 74 (02):
  • [9] Merging neutron star - Black hole binaries
    Ruffert, M
    Janka, HT
    GAMMA-RAY BURST AND AFTERGLOW ASTRONOMY 2001, 2003, 662 : 193 - 198
  • [10] Merging black hole binaries with the SEVN code
    Spera, Mario
    Mapelli, Michela
    Giacobbo, Nicola
    Trani, Alessandro A.
    Bressan, Alessandro
    Costa, Guglielmo
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 485 (01) : 889 - 907