REMARKS ON HILBERT'S TENTH PROBLEM AND THE IWASAWA THEORY OF ELLIPTIC CURVES

被引:2
|
作者
Ray, Anwesh [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
Hilbert's tenth problem; Iwasawa theory; elliptic curves; variation of Mordell-Weil ranks in towers of number fields; DIOPHANTINE SETS; RINGS; EXTENSIONS;
D O I
10.1017/S000497272200082X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve with positive rank over a number field K and let p be an odd prime number. Let K-cyc be the cyclotomic Z(p)-extension of K and K-n its nth layer. The Mordell-Weil rank of E is said to be constant in the cyclotomic tower of K if for all n, the rank of E(K-n) is equal to the rank of E(K). We apply techniques in Iwasawa theory to obtain explicit conditions for the rank of an elliptic curve to be constant in this sense. We then indicate the potential applications to Hilbert's tenth problem for number rings.
引用
下载
收藏
页码:440 / 450
页数:11
相关论文
共 50 条
  • [1] DESCENT ON ELLIPTIC CURVES AND HILBERT'S TENTH PROBLEM
    Eisentraeger, Kirsten
    Everest, Graham
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (06) : 1951 - 1959
  • [2] Some remarks on the Iwasawa theory of elliptic curves
    Perrin-Riou, B
    NUMBER THEORY FOR THE MILLENNIUM III, 2002, : 119 - 147
  • [3] Ranks of twists of elliptic curves and Hilbert's tenth problem
    Mazur, B.
    Rubin, K.
    INVENTIONES MATHEMATICAE, 2010, 181 (03) : 541 - 575
  • [4] Ranks of twists of elliptic curves and Hilbert’s tenth problem
    B. Mazur
    K. Rubin
    Inventiones mathematicae, 2010, 181 : 541 - 575
  • [5] Elliptic curves, L-functions, and Hilbert's tenth problem
    Murty, M. Ram
    Pasten, Hector
    JOURNAL OF NUMBER THEORY, 2018, 182 : 1 - 18
  • [6] Towards Hilbert's tenth problem for rings of integers through Iwasawa theory and Heegner points
    Garcia-Fritz, Natalia
    Pasten, Hector
    MATHEMATISCHE ANNALEN, 2020, 377 (3-4) : 989 - 1013
  • [7] Towards Hilbert’s tenth problem for rings of integers through Iwasawa theory and Heegner points
    Natalia Garcia-Fritz
    Hector Pasten
    Mathematische Annalen, 2020, 377 : 989 - 1013
  • [8] Iwasawa theory for elliptic curves
    Greenberg, R
    ARITHMETIC THEORY OF ELLIPTIC CURVES, 1999, 1716 : 51 - 144
  • [9] Equivariant Iwasawa theory for elliptic curves
    Takenori Kataoka
    Mathematische Zeitschrift, 2021, 298 : 1653 - 1725
  • [10] Equivariant Iwasawa theory for elliptic curves
    Kataoka, Takenori
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1653 - 1725