Equivariant Iwasawa theory for elliptic curves

被引:2
|
作者
Kataoka, Takenori [1 ]
机构
[1] Keio Univ, Fac Sci & Technol, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
关键词
Selmer groups; p-adic L-functions; Main conjecture; Mazur-Tate conjecture; KATOS EULER SYSTEM; SELMER GROUPS; SUPERSINGULAR PRIMES; CONJECTURES; BIRCH;
D O I
10.1007/s00209-020-02666-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss abelian equivariant Iwasawa theory for elliptic curves over Q at good supersingular primes and non-anomalous good ordinary primes. Using Kobayashi's method, we construct equivariant Coleman maps, which send the Beilinson-Kato element to the equivariant p-adic L-functions. Then we propose equivariant main conjectures and, under certain assumptions, prove one divisibility via Euler system machinery. As an application, we prove a case of a conjecture of Mazur-Tate.
引用
收藏
页码:1653 / 1725
页数:73
相关论文
共 50 条