REMARKS ON HILBERT'S TENTH PROBLEM AND THE IWASAWA THEORY OF ELLIPTIC CURVES

被引:2
|
作者
Ray, Anwesh [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
Hilbert's tenth problem; Iwasawa theory; elliptic curves; variation of Mordell-Weil ranks in towers of number fields; DIOPHANTINE SETS; RINGS; EXTENSIONS;
D O I
10.1017/S000497272200082X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve with positive rank over a number field K and let p be an odd prime number. Let K-cyc be the cyclotomic Z(p)-extension of K and K-n its nth layer. The Mordell-Weil rank of E is said to be constant in the cyclotomic tower of K if for all n, the rank of E(K-n) is equal to the rank of E(K). We apply techniques in Iwasawa theory to obtain explicit conditions for the rank of an elliptic curve to be constant in this sense. We then indicate the potential applications to Hilbert's tenth problem for number rings.
引用
收藏
页码:440 / 450
页数:11
相关论文
共 50 条
  • [41] STATISTICS FOR IWASAWA INVARIANTS OF ELLIPTIC CURVES
    Kundu, Debanjana
    Ray, Anwesh
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (11) : 7945 - 7965
  • [42] A note on Iwasawa µ-invariants of elliptic curves
    Rupam Barman
    Anupam Saikia
    Bulletin of the Brazilian Mathematical Society, New Series, 2010, 41 : 399 - 407
  • [43] Asymptotic behavior of class groups and cyclotomic Iwasawa theory of elliptic curves
    Hiranouchi, Toshiro
    Ohshita, Tatsuya
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2023, 35 (02): : 591 - 657
  • [44] Hilbert's tenth problem and paradigms of computation
    Matiyasevich, Y
    NEW COMPUTATIONAL PARADIGMS, 2005, 3526 : 310 - 321
  • [45] Quantum algorithm for Hilbert's tenth problem
    Kieu, TD
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (07) : 1451 - 1468
  • [46] The Hilbert's-Tenth-Problem Operator
    Kramer, Kenneth
    Miller, Russell
    ISRAEL JOURNAL OF MATHEMATICS, 2019, 230 (02) : 693 - 713
  • [47] A note on Iwasawa Aμ-invariants of elliptic curves
    Barman, Rupam
    Saikia, Anupam
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2010, 41 (03): : 399 - 407
  • [48] Hilbert’s tenth problem: Refinements and variants
    Gasarch, William
    arXiv, 2021,
  • [49] Non-commutative Iwasawa theory for elliptic curves with multiplicative reduction
    Delbourgo, Daniel
    Lei, Antonio
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2016, 160 (01) : 11 - 38
  • [50] CODIMENSION TWO CYCLES IN IWASAWA THEORY AND ELLIPTIC CURVES WITH SUPERSINGULAR REDUCTION
    Lei, Antonio
    Palvannan, Bharathwaj
    FORUM OF MATHEMATICS SIGMA, 2019, 7