Elliptic curves, L-functions, and Hilbert's tenth problem

被引:5
|
作者
Murty, M. Ram [1 ]
Pasten, Hector [2 ]
机构
[1] Queens Univ, Dept Math & Stat, Jeffery Hall,Univ Ave, Kingston, ON K7L 3N6, Canada
[2] Harvard Univ, Dept Math, 1 Oxford St, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Hilbert's tenth problem; Rings of integers; Ranks of elliptic curves; ALGEBRAIC NUMBER-FIELDS; DIOPHANTINE SETS; ZETA-FUNCTIONS; MODULAR-FORMS; RINGS; INTEGERS; VALUES; RANK;
D O I
10.1016/j.jnt.2017.07.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hilbert's tenth problem for rings of integers of number fields remains open in general, although a negative solution has been obtained by Mazur and Rubin conditional to a conjecture on Shafarevich-Tate groups. In this work we consider the problem from the point of view of analytic aspects of L-functions instead. We show that Hilbert's tenth problem for rings of integers of number fields is unsolvable, conditional to the following conjectures for L-functions of elliptic curves: the automorphy conjecture and the rank part of the Birch and Swinnerton Dyer conjecture. (C) 2017 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] DESCENT ON ELLIPTIC CURVES AND HILBERT'S TENTH PROBLEM
    Eisentraeger, Kirsten
    Everest, Graham
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (06) : 1951 - 1959
  • [2] Ranks of twists of elliptic curves and Hilbert's tenth problem
    Mazur, B.
    Rubin, K.
    INVENTIONES MATHEMATICAE, 2010, 181 (03) : 541 - 575
  • [3] Ranks of twists of elliptic curves and Hilbert’s tenth problem
    B. Mazur
    K. Rubin
    Inventiones mathematicae, 2010, 181 : 541 - 575
  • [4] REMARKS ON HILBERT'S TENTH PROBLEM AND THE IWASAWA THEORY OF ELLIPTIC CURVES
    Ray, Anwesh
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 107 (03) : 440 - 450
  • [5] On the vanishing of twisted L-functions of elliptic curves
    David, C
    Fearnley, J
    Kisilevsky, H
    EXPERIMENTAL MATHEMATICS, 2004, 13 (02) : 185 - 198
  • [6] L-FUNCTIONS OF ELLIPTIC CURVES AND FIBONACCI NUMBERS
    Luca, Florian
    Yalciner, Aynur
    FIBONACCI QUARTERLY, 2013, 51 (02): : 112 - 118
  • [7] The universality of the derivatives of L-functions of elliptic curves
    Garbaliauskiene, V.
    Laurincikas, A.
    ANALYTIC AND PROBABILISTIC METHODS IN NUMBER THEORY, 2007, : 24 - 29
  • [8] L-FUNCTIONS OF ELLIPTIC CURVES AND BINARY RECURRENCES
    Luca, Florian
    Oyono, Roger
    Yalciner, Aynur
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (03) : 509 - 519
  • [9] L-functions of elliptic curves modulo integers
    Boudreau, Felix Baril
    JOURNAL OF NUMBER THEORY, 2024, 256 : 218 - 252
  • [10] Discrete universality of the L-functions of elliptic curves
    Garbaliauskiene, V.
    Genys, J.
    Laurincikas, A.
    SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (04) : 612 - 627