On the vanishing of twisted L-functions of elliptic curves

被引:26
|
作者
David, C [1 ]
Fearnley, J [1 ]
Kisilevsky, H [1 ]
机构
[1] Concordia Univ, Dept Math & Stat, 1455 Maisonneuve Blvd W, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
elliptic curves; L-functions; random matrix theory;
D O I
10.1080/10586458.2004.10504532
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve over Q with L-function L-E(s). We use the random matrix model of Katz and Sarnak to develop a heuristic for the frequency of vanishing of the twisted L-functions LE(I,chi), as chi runs over the Dirichlet characters of order 3 (cubic twists). We also compute explicitly the conjecture of Keating and Snaith about the moments of the special values LE(I,chi) in the family of cubic twists. Finally, we present experimental data which is consistent with the conjectures for the moments and for the vanishing in the family of cubic twists of L-E(s).
引用
收藏
页码:185 / 198
页数:14
相关论文
共 50 条
  • [1] Non-vanishing of Artin-twisted L-functions of elliptic curves
    Ward, Thomas
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2013, 28 (02) : 233 - 245
  • [2] On the vanishing of twisted L-functions of elliptic curves over rational function fields
    Antoine Comeau-Lapointe
    Chantal David
    Matilde Lalin
    Wanlin Li
    Research in Number Theory, 2022, 8
  • [3] On the vanishing of twisted L-functions of elliptic curves over rational function fields
    Comeau-Lapointe, Antoine
    David, Chantal
    Lalin, Matilde
    Li, Wanlin
    RESEARCH IN NUMBER THEORY, 2022, 8 (04)
  • [4] Vanishing and non-vanishing Dirichlet twists of L-functions of elliptic curves
    Fearnley, Jack
    Kisilevsky, Hershy
    Kuwata, Masato
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 86 : 539 - 557
  • [5] Averages of twisted elliptic L-functions
    Perelli, A
    Pomykala, J
    ACTA ARITHMETICA, 1997, 80 (02) : 149 - 163
  • [6] L-functions of twisted Legendre curves
    Hall, Chris
    JOURNAL OF NUMBER THEORY, 2006, 119 (01) : 128 - 147
  • [7] L-FUNCTIONS OF ELLIPTIC CURVES AND FIBONACCI NUMBERS
    Luca, Florian
    Yalciner, Aynur
    FIBONACCI QUARTERLY, 2013, 51 (02): : 112 - 118
  • [8] The universality of the derivatives of L-functions of elliptic curves
    Garbaliauskiene, V.
    Laurincikas, A.
    ANALYTIC AND PROBABILISTIC METHODS IN NUMBER THEORY, 2007, : 24 - 29
  • [9] L-FUNCTIONS OF ELLIPTIC CURVES AND BINARY RECURRENCES
    Luca, Florian
    Oyono, Roger
    Yalciner, Aynur
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (03) : 509 - 519
  • [10] L-functions of elliptic curves modulo integers
    Boudreau, Felix Baril
    JOURNAL OF NUMBER THEORY, 2024, 256 : 218 - 252