On the vanishing of twisted L-functions of elliptic curves

被引:26
|
作者
David, C [1 ]
Fearnley, J [1 ]
Kisilevsky, H [1 ]
机构
[1] Concordia Univ, Dept Math & Stat, 1455 Maisonneuve Blvd W, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
elliptic curves; L-functions; random matrix theory;
D O I
10.1080/10586458.2004.10504532
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve over Q with L-function L-E(s). We use the random matrix model of Katz and Sarnak to develop a heuristic for the frequency of vanishing of the twisted L-functions LE(I,chi), as chi runs over the Dirichlet characters of order 3 (cubic twists). We also compute explicitly the conjecture of Keating and Snaith about the moments of the special values LE(I,chi) in the family of cubic twists. Finally, we present experimental data which is consistent with the conjectures for the moments and for the vanishing in the family of cubic twists of L-E(s).
引用
收藏
页码:185 / 198
页数:14
相关论文
共 50 条