Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app

被引:10
|
作者
Bousquet, J. [1 ,2 ,3 ,4 ,5 ]
Sousa-Pinto, B. [6 ,7 ,8 ,9 ]
Anto, J. M. [10 ,11 ,12 ,13 ]
Amaral, R. [6 ,7 ,8 ,9 ]
Brussino, L. [14 ,15 ]
Canonica, G. W. [16 ,17 ]
Cruz, A. A. [18 ,19 ]
Gemicioglu, B. [20 ]
Haahtela, T. [21 ]
Kupczyk, M. [22 ]
Kvedariene, V. [23 ,24 ]
Larenas-Linnemann, D. E. [25 ]
Louis, R. [26 ,27 ]
Pham-Thi, N. [28 ]
Puggioni, F. [16 ,17 ]
Regateiro, F. S. [29 ,30 ,31 ]
Romantowski, J. [32 ]
Sastre, J. [33 ]
Scichilone, N. [34 ]
Taborda-Barata, L. [35 ,36 ,37 ]
Ventura, M. T. [38 ]
Agache, I. [39 ]
Bedbrook, A. [40 ]
Bergmann, K. C. [1 ,2 ,3 ,4 ]
Bosnic-Anticevich, S. [41 ,42 ,43 ]
Bonini, M. [44 ,45 ,46 ,47 ]
Boulet, L. P. [48 ]
Brusselle, G. [49 ]
Buhl, R. [50 ]
Cecchi, L. [51 ]
Charpin, D. [52 ]
Chaves-Loureiro, C. [53 ]
Czarlewski, W. [54 ]
de Blay, F. [55 ,56 ]
Devillier, P. [57 ]
Joos, G. [49 ]
Jutel, M. [58 ,59 ]
Klimek, L. [60 ,61 ]
Kuna, P. [22 ]
Laune, D. [62 ]
Pech, J. L. [63 ]
Makela, M. [21 ]
Morais-Almeida, M. [64 ]
Nadif, R. [65 ,66 ]
Niedoszytko, M. [32 ]
Ohta, K. [67 ,68 ]
Papadopoulos, N. G. [69 ]
Papi, A. [70 ]
Yeverino, D. R. [71 ]
Roche, N. [72 ,73 ]
机构
[1] Charite Univ Med Berlin, Inst Allergol, Berlin, Germany
[2] Free Univ Berlin, Berlin, Germany
[3] Humboldt Univ, Berlin, Germany
[4] Fraunhofer Inst Translat Med & Pharmacol ITMP, Allergol & Immunol, Berlin, Germany
[5] Univ Hosp Montpellier, Montpellier, France
[6] Univ Porto, MEDCIDS Dept Community Med Informat & Hlth Decis, Porto, Portugal
[7] Univ Porto, Fac Med, Porto, Portugal
[8] Univ Porto, CINTESIS Ctr Hlth Technol & Serv Res, Porto, Portugal
[9] Univ Porto, RISE Hlth Res Network, Porto, Portugal
[10] Barcelona Inst Global Hlth, ISGlobal, Barcelona, Spain
[11] IMIM Hosp Mar Med Res Inst, Barcelona, Spain
[12] Univ Pompeu Fabra UPF, Barcelona, Spain
[13] CIBER Epidemiol & Salud Publ CIBERESP, Barcelona, Spain
[14] Univ Torino, Dept Med Sci, Allergy & Clin Immunol Unit, Turin, Italy
[15] Mauriziano Hosp, Turin, Italy
[16] Humanitas Univ, Dept Biomed Sci, Milan, Italy
[17] Humanitas Clin & Res Ctr IRCCS, Personalized Med Asthma & Allergy, Rozzano, Italy
[18] Univ Fed Bahia, Fundacao ProAR, Salvador, BA, Brazil
[19] GARD WHO Planning Grp, Salvador, BA, Brazil
[20] Istanbul Univ Cerrahpasa, Cerrahpasa Fac Med, Dept Pulm Dis, Istanbul, Turkiye
[21] Univ Helsinki, Helsinki Univ Hosp, Skin & Allergy Hosp, Helsinki, Finland
[22] Med Univ Lodz, Barlicki Univ Hosp, Div Internal Med Asthma & Allergy, Lodz, Poland
[23] Vilnius Univ, Inst Clin Med, Fac Med, Clin Chest Dis & Allergol, Vilnius, Lithuania
[24] Vilnius Univ, Inst Biomed Sci, Fac Med, Dept Pathol, Vilnius, Lithuania
[25] Med Clin Fdn & Hosp, Ctr Excellence Asthma & Allergy, Mexico City, DF, Mexico
[26] CHU Liege, Dept Pulm Med, Liege, Belgium
[27] Univ Liege, GIGA Res Grp I3, Liege, Belgium
[28] Ecole Polytech Palaiseau, IRBA, Bretigny Sur Orge, France
[29] CHU Coimbra, Allergy & Clin Immunol Unit, Coimbra, Portugal
[30] Univ Coimbra, Coimbra Inst Clin & Biomed Res ICBR, Fac Med, Coimbra, Portugal
[31] Univ Coimbra, Inst Immunol, Fac Med, Coimbra, Portugal
[32] Med Univ Gdansk, Dept Allergol, Gdansk, Poland
[33] Univ Autonoma Madrid, Fdn Jimenez Diaz, Fac Med, CIBERES, Madrid, Spain
[34] Univ Palermo, PROMISE Dept, Palermo, Italy
[35] Cova da Beira Univ Hosp Ctr, Dept Immunoallergol, Covilha, Portugal
[36] Univ Beira Interior, UBIAir Clin & Expt Lung Ctr, Covilha, Portugal
[37] Univ Beira Interior, CICS UBI Hlth Sci Res Ctr, Covilha, Portugal
[38] Univ Bari, Med Sch, Unit Geriatr Immunoallergol, Bari, Italy
[39] Transylvania Univ Brasov, Brasov, Romania
[40] ARIA, Montpellier, France
[41] Univ Sydney, Woolcock Inst Med Res, Qual Use Resp Med Grp, Sydney, NSW, Australia
[42] Univ Sydney, Sydney, NSW, Australia
[43] Sydney Local Hlth Dist, Sydney, NSW, Australia
[44] Univ Cattolica Sacro Cuore, Dept Cardiovasc & Thorac Sci, Rome, Italy
[45] Fdn Policlin Univ A Gemelli IRCCS, Dept Clin & Surg Sci, Rome, Italy
[46] Royal Brompton Hosp, Natl Heart & Lung Inst, London, England
[47] Imperial Coll London, London, England
[48] Laval Univ, Quebec Heart & Lung Inst, Quebec City, PQ, Canada
[49] Ghent Univ Hosp, Dept Resp Med, Ghent, Belgium
[50] Mainz Univ Hosp, Dept Pulm Med, Mainz, Germany
来源
PULMONOLOGY | 2023年 / 29卷 / 04期
关键词
Asthma; Rhinitis; Cluster analysis; Treatment; Control; RHINITIS;
D O I
10.1016/j.pulmoe.2022.10.005
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Background: The self-reporting of asthma frequently leads to patient misidentification in epi-demiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app. Methods: We studied MASK-air & REG; users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale -"VAS Asthma") at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma pat-terns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels. Findings: We assessed a total of 8,075 MASK-air & REG; users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncon-trolled asthma despite treatment (11.9-16.1% of MASK-air & REG; users); (ii) treated and partly-con-trolled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classi-fication was validated in a study of 192 patients enrolled by physicians. Interpretation: We identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemio-logical approaches in identifying patients with asthma. & COPY; 2022 Sociedade Portuguesa de Pneumologia. Published by Elsevier Espana, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:292 / 305
页数:14
相关论文
共 50 条
  • [41] Exploring negative symptoms heterogeneity in patients diagnosed with schizophrenia and schizoaffective disorder using cluster analysis
    Fekih-Romdhane, Feten
    Hajje, Romy
    Haddad, Chadia
    Hallit, Souheil
    Azar, Jocelyne
    BMC PSYCHIATRY, 2023, 23 (01)
  • [42] Identification of the Core Nutrition Impact Symptoms Cluster in Patients with Lung Cancer During Chemotherapy: A Symptom Network Analysis
    Zheng, Dan-Dan
    Jin, Ting
    Li, Dan
    Bao, Kang-Ning
    Jin, Rui-Hua
    SEMINARS IN ONCOLOGY NURSING, 2025, 41 (01)
  • [43] Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis
    Mitchell J Cohen
    Adam D Grossman
    Diane Morabito
    M Margaret Knudson
    Atul J Butte
    Geoffrey T Manley
    Critical Care, 14
  • [44] Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis
    Cohen, Mitchell J.
    Grossman, Adam D.
    Morabito, Diane
    Knudson, M. Margaret
    Butte, Atul J.
    Manley, Geoffrey T.
    CRITICAL CARE, 2010, 14 (01):
  • [45] Identification of Specific IgE Antibodies and Asthma Control Interaction and Association Using Cluster Analysis in a Bulgarian Asthmatic Children Cohort
    Lazova, Snezhina
    Velikova, Tsvetelina
    Priftis, Stamatios
    Petrova, Guergana
    ANTIBODIES, 2020, 9 (03) : 1 - 12
  • [46] Analysis of Relationship Between Asthma and Rhinitis Symptoms in Patients Treated in University Hospital by Using Sacra Questionnaire
    Nagase, Hiroyuki
    Sugimoto, Naoya
    Nakase, Yuko
    Tanaka, Yusuke
    Kamiyama, Asae
    Kojima, Yasuhiro
    Yoshihara, Hisanao
    Kuramochi, Michio
    Tashimo, Hiroyuki
    Arai, Hidenori
    Yamaguchi, Masao
    Ohta, Ken
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2013, 131 (02) : AB208 - AB208
  • [47] Identification of Distinct Clinical Phenotypes of Heterogeneous Mechanically Ventilated ICU Patients Using Cluster Analysis
    Chen, Xuanhui
    Li, Jiaxin
    Liu, Guangjian
    Chen, Xiujuan
    Huang, Shuai
    Li, Huixian
    Liu, Siyi
    Li, Dantong
    Yang, Huan
    Zheng, Haiqing
    Hu, Lianting
    Kong, Lingcong
    Liu, Huazhang
    Bellou, Abdelouahab
    Lei, Liming
    Liang, Huiying
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (04)
  • [48] Identification of distinct clinical phenotypes in mechanically ventilated patients with acute brain dysfunction using cluster analysis
    Souza-Dantas, Vicente Ces
    Dal-Pizzol, Felipe
    Tomasi, Cristiane D.
    Spector, Nelson
    Soares, Marcio
    Bozza, Fernando A.
    Povoa, Pedro
    Salluh, Jorge I. F.
    MEDICINE, 2020, 99 (18) : E20041
  • [49] Identification of steroid response signature among patients with mild to moderate asthma using differential protein expression analysis
    Patel, Tanvi
    Kaphalia, Lata
    Calhoun, William J.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2017, 139 (02) : AB5 - AB5
  • [50] Identification of novel clinical subtypes in patients with microscopic polyangiitis using cluster analysis: multicenter REVEAL cohort study
    Okazaki, Ayana
    Matsuda, Shogo
    Kotani, Takuya
    Fukui, Keisuke
    Gon, Takaho
    Watanabe, Ryu
    Manabe, Atsushi
    Shoji, Mikihito
    Kadoba, Keiichiro
    Hiwa, Ryosuke
    Yamamoto, Wataru
    Hashimoto, Motomu
    Takeuchi, Tohru
    FRONTIERS IN IMMUNOLOGY, 2025, 15