Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app

被引:10
|
作者
Bousquet, J. [1 ,2 ,3 ,4 ,5 ]
Sousa-Pinto, B. [6 ,7 ,8 ,9 ]
Anto, J. M. [10 ,11 ,12 ,13 ]
Amaral, R. [6 ,7 ,8 ,9 ]
Brussino, L. [14 ,15 ]
Canonica, G. W. [16 ,17 ]
Cruz, A. A. [18 ,19 ]
Gemicioglu, B. [20 ]
Haahtela, T. [21 ]
Kupczyk, M. [22 ]
Kvedariene, V. [23 ,24 ]
Larenas-Linnemann, D. E. [25 ]
Louis, R. [26 ,27 ]
Pham-Thi, N. [28 ]
Puggioni, F. [16 ,17 ]
Regateiro, F. S. [29 ,30 ,31 ]
Romantowski, J. [32 ]
Sastre, J. [33 ]
Scichilone, N. [34 ]
Taborda-Barata, L. [35 ,36 ,37 ]
Ventura, M. T. [38 ]
Agache, I. [39 ]
Bedbrook, A. [40 ]
Bergmann, K. C. [1 ,2 ,3 ,4 ]
Bosnic-Anticevich, S. [41 ,42 ,43 ]
Bonini, M. [44 ,45 ,46 ,47 ]
Boulet, L. P. [48 ]
Brusselle, G. [49 ]
Buhl, R. [50 ]
Cecchi, L. [51 ]
Charpin, D. [52 ]
Chaves-Loureiro, C. [53 ]
Czarlewski, W. [54 ]
de Blay, F. [55 ,56 ]
Devillier, P. [57 ]
Joos, G. [49 ]
Jutel, M. [58 ,59 ]
Klimek, L. [60 ,61 ]
Kuna, P. [22 ]
Laune, D. [62 ]
Pech, J. L. [63 ]
Makela, M. [21 ]
Morais-Almeida, M. [64 ]
Nadif, R. [65 ,66 ]
Niedoszytko, M. [32 ]
Ohta, K. [67 ,68 ]
Papadopoulos, N. G. [69 ]
Papi, A. [70 ]
Yeverino, D. R. [71 ]
Roche, N. [72 ,73 ]
机构
[1] Charite Univ Med Berlin, Inst Allergol, Berlin, Germany
[2] Free Univ Berlin, Berlin, Germany
[3] Humboldt Univ, Berlin, Germany
[4] Fraunhofer Inst Translat Med & Pharmacol ITMP, Allergol & Immunol, Berlin, Germany
[5] Univ Hosp Montpellier, Montpellier, France
[6] Univ Porto, MEDCIDS Dept Community Med Informat & Hlth Decis, Porto, Portugal
[7] Univ Porto, Fac Med, Porto, Portugal
[8] Univ Porto, CINTESIS Ctr Hlth Technol & Serv Res, Porto, Portugal
[9] Univ Porto, RISE Hlth Res Network, Porto, Portugal
[10] Barcelona Inst Global Hlth, ISGlobal, Barcelona, Spain
[11] IMIM Hosp Mar Med Res Inst, Barcelona, Spain
[12] Univ Pompeu Fabra UPF, Barcelona, Spain
[13] CIBER Epidemiol & Salud Publ CIBERESP, Barcelona, Spain
[14] Univ Torino, Dept Med Sci, Allergy & Clin Immunol Unit, Turin, Italy
[15] Mauriziano Hosp, Turin, Italy
[16] Humanitas Univ, Dept Biomed Sci, Milan, Italy
[17] Humanitas Clin & Res Ctr IRCCS, Personalized Med Asthma & Allergy, Rozzano, Italy
[18] Univ Fed Bahia, Fundacao ProAR, Salvador, BA, Brazil
[19] GARD WHO Planning Grp, Salvador, BA, Brazil
[20] Istanbul Univ Cerrahpasa, Cerrahpasa Fac Med, Dept Pulm Dis, Istanbul, Turkiye
[21] Univ Helsinki, Helsinki Univ Hosp, Skin & Allergy Hosp, Helsinki, Finland
[22] Med Univ Lodz, Barlicki Univ Hosp, Div Internal Med Asthma & Allergy, Lodz, Poland
[23] Vilnius Univ, Inst Clin Med, Fac Med, Clin Chest Dis & Allergol, Vilnius, Lithuania
[24] Vilnius Univ, Inst Biomed Sci, Fac Med, Dept Pathol, Vilnius, Lithuania
[25] Med Clin Fdn & Hosp, Ctr Excellence Asthma & Allergy, Mexico City, DF, Mexico
[26] CHU Liege, Dept Pulm Med, Liege, Belgium
[27] Univ Liege, GIGA Res Grp I3, Liege, Belgium
[28] Ecole Polytech Palaiseau, IRBA, Bretigny Sur Orge, France
[29] CHU Coimbra, Allergy & Clin Immunol Unit, Coimbra, Portugal
[30] Univ Coimbra, Coimbra Inst Clin & Biomed Res ICBR, Fac Med, Coimbra, Portugal
[31] Univ Coimbra, Inst Immunol, Fac Med, Coimbra, Portugal
[32] Med Univ Gdansk, Dept Allergol, Gdansk, Poland
[33] Univ Autonoma Madrid, Fdn Jimenez Diaz, Fac Med, CIBERES, Madrid, Spain
[34] Univ Palermo, PROMISE Dept, Palermo, Italy
[35] Cova da Beira Univ Hosp Ctr, Dept Immunoallergol, Covilha, Portugal
[36] Univ Beira Interior, UBIAir Clin & Expt Lung Ctr, Covilha, Portugal
[37] Univ Beira Interior, CICS UBI Hlth Sci Res Ctr, Covilha, Portugal
[38] Univ Bari, Med Sch, Unit Geriatr Immunoallergol, Bari, Italy
[39] Transylvania Univ Brasov, Brasov, Romania
[40] ARIA, Montpellier, France
[41] Univ Sydney, Woolcock Inst Med Res, Qual Use Resp Med Grp, Sydney, NSW, Australia
[42] Univ Sydney, Sydney, NSW, Australia
[43] Sydney Local Hlth Dist, Sydney, NSW, Australia
[44] Univ Cattolica Sacro Cuore, Dept Cardiovasc & Thorac Sci, Rome, Italy
[45] Fdn Policlin Univ A Gemelli IRCCS, Dept Clin & Surg Sci, Rome, Italy
[46] Royal Brompton Hosp, Natl Heart & Lung Inst, London, England
[47] Imperial Coll London, London, England
[48] Laval Univ, Quebec Heart & Lung Inst, Quebec City, PQ, Canada
[49] Ghent Univ Hosp, Dept Resp Med, Ghent, Belgium
[50] Mainz Univ Hosp, Dept Pulm Med, Mainz, Germany
来源
PULMONOLOGY | 2023年 / 29卷 / 04期
关键词
Asthma; Rhinitis; Cluster analysis; Treatment; Control; RHINITIS;
D O I
10.1016/j.pulmoe.2022.10.005
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Background: The self-reporting of asthma frequently leads to patient misidentification in epi-demiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app. Methods: We studied MASK-air & REG; users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale -"VAS Asthma") at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma pat-terns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels. Findings: We assessed a total of 8,075 MASK-air & REG; users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncon-trolled asthma despite treatment (11.9-16.1% of MASK-air & REG; users); (ii) treated and partly-con-trolled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classi-fication was validated in a study of 192 patients enrolled by physicians. Interpretation: We identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemio-logical approaches in identifying patients with asthma. & COPY; 2022 Sociedade Portuguesa de Pneumologia. Published by Elsevier Espana, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:292 / 305
页数:14
相关论文
共 50 条
  • [21] Identification of Subtypes of Refractory Asthma in Korean Patients by Cluster Analysis
    An Soo Jang
    Hyouk-Soo Kwon
    You Sook Cho
    Yun Jeong Bae
    Tae Bum Kim
    Jong Sook Park
    Sung Woo Park
    Soo-Taek Uh
    Jae-Sung Choi
    Yong-Hoon Kim
    Hyeon-Kyu Hwang
    Hee-Bom Moon
    Choon Sik Park
    Lung, 2013, 191 : 87 - 93
  • [22] Nasal symptoms and continuous positive airway pressure (CPAP) tolerance in patients using an oro-nasal mask
    Lamprou, K.
    Chaidas, K.
    JOURNAL OF SLEEP RESEARCH, 2022, 31
  • [23] Identification of Phenotypes for Older Adults with Asthma using Cluster Analysis
    Polivka, B. J.
    Huntington-Moskos, L.
    Antimisiaris, D.
    Folz, R.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 205
  • [24] Identification and validation of asthma phenotypes in Chinese population using cluster analysis
    Wang, Lei
    Liang, Rui
    Zhou, Ting
    Zheng, Jing
    Liang, Bing Miao
    Zhang, Hong Ping
    Luo, Feng Ming
    Gibson, Peter G.
    Wang, Gang
    ANNALS OF ALLERGY ASTHMA & IMMUNOLOGY, 2017, 119 (04) : 324 - 332
  • [25] Impact of Uncontrolled Symptoms on the Health-Related Quality of Life (EQ-5D-5L) of Patients With Allergic Rhinitis: A MASK-air Study
    Vieira, Rafael Jose
    Leemann, Lucas
    Schunemann, Holger J.
    Azevedo, Luis Filipe
    Fonseca, Joao A.
    Bousquet, Jean
    Sousa-Pinto, Bernardo
    CLINICAL AND EXPERIMENTAL ALLERGY, 2024, 54 (08): : 634 - 637
  • [26] ANALYSIS OF ADVANTAGES OF USING ENDOSCOPIC SEPTOPLASTY AMONG THE PATIENTS WITH SYMPTOMS OF DEFLECTED NASAL SYMPTOMS
    Barkat, Muhammad Tahir
    Usman, Muhammad
    Ali, Zulqarnain
    INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2019, 6 (02): : 4566 - 4569
  • [27] Identification of Asthma Phenotypes in the Spanish MEGA Cohort Study Using Cluster Analysis
    Matabuena, Marcos
    Salgado, Francisco Javier
    Nieto-Fontarigo, Juan Jose
    Alvarez-Puebla, Maria J.
    Arismendi, Ebymar
    Barranco, Pilar
    Bobolea, Irina
    Caballero, Maria L.
    Canas, Jose Antonio
    Cardaba, Blanca
    Cruz, Maria Jesus
    Curto, Elena
    Dominguez-Ortega, Javier
    Luna, Juan Alberto
    Martinez-Rivera, Carlos
    Mullol, Joaquim
    Munoz, Xavier
    Rodriguez-Garcia, Javier
    Olaguibel, Jose Maria
    Picado, Cesar
    Plaza, Vicente
    Quirce, Santiago
    Rial, Manuel J.
    Romero-Mesones, Christian
    Sastre, Beatriz
    Soto-Retes, Lorena
    Valero, Antonio
    Valverde-Monge, Marcela
    Del Pozo, Victoria
    Sastre, Joaquin
    Gonzalez-Barcala, Francisco Javier
    ARCHIVOS DE BRONCONEUMOLOGIA, 2023, 59 (04): : 223 - 231
  • [28] Identification of the subgroups of nonmotor symptoms in Parkinson's disease using cluster analysis
    Yang, H. J.
    Kim, Y. E.
    Yun, J. Y.
    Eom, G.
    Park, H.
    Kim, H. J.
    Jeon, B. S.
    MOVEMENT DISORDERS, 2013, 28 : S75 - S75
  • [29] Identification of redundant sensors in an air pollution network using cluster analysis and SOM
    Ibarra-Berastegi, G.
    Saenz, J.
    Ezcurra, A.
    Ganzedo, U.
    Elias, A.
    Barona, A.
    Barinaga, A.
    AIR POLLUTION XVIII, 2010, 136 : 359 - 366
  • [30] FASE-CPHG Study: identification of asthma phenotypes in the French Severe Asthma Study using cluster analysis
    Raherison-Semjen, Chantal
    Parrat, Eric
    Nocent-Eijnani, Cecilia
    Mangiapan, Gilles
    Prudhomme, Anne
    Oster, Jean-Philippe
    de Vecchi, Corinne Aperre
    Maurer, Cyril
    Debieuvre, Didier
    Portel, Laurent
    RESPIRATORY RESEARCH, 2021, 22 (01)