Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app

被引:10
|
作者
Bousquet, J. [1 ,2 ,3 ,4 ,5 ]
Sousa-Pinto, B. [6 ,7 ,8 ,9 ]
Anto, J. M. [10 ,11 ,12 ,13 ]
Amaral, R. [6 ,7 ,8 ,9 ]
Brussino, L. [14 ,15 ]
Canonica, G. W. [16 ,17 ]
Cruz, A. A. [18 ,19 ]
Gemicioglu, B. [20 ]
Haahtela, T. [21 ]
Kupczyk, M. [22 ]
Kvedariene, V. [23 ,24 ]
Larenas-Linnemann, D. E. [25 ]
Louis, R. [26 ,27 ]
Pham-Thi, N. [28 ]
Puggioni, F. [16 ,17 ]
Regateiro, F. S. [29 ,30 ,31 ]
Romantowski, J. [32 ]
Sastre, J. [33 ]
Scichilone, N. [34 ]
Taborda-Barata, L. [35 ,36 ,37 ]
Ventura, M. T. [38 ]
Agache, I. [39 ]
Bedbrook, A. [40 ]
Bergmann, K. C. [1 ,2 ,3 ,4 ]
Bosnic-Anticevich, S. [41 ,42 ,43 ]
Bonini, M. [44 ,45 ,46 ,47 ]
Boulet, L. P. [48 ]
Brusselle, G. [49 ]
Buhl, R. [50 ]
Cecchi, L. [51 ]
Charpin, D. [52 ]
Chaves-Loureiro, C. [53 ]
Czarlewski, W. [54 ]
de Blay, F. [55 ,56 ]
Devillier, P. [57 ]
Joos, G. [49 ]
Jutel, M. [58 ,59 ]
Klimek, L. [60 ,61 ]
Kuna, P. [22 ]
Laune, D. [62 ]
Pech, J. L. [63 ]
Makela, M. [21 ]
Morais-Almeida, M. [64 ]
Nadif, R. [65 ,66 ]
Niedoszytko, M. [32 ]
Ohta, K. [67 ,68 ]
Papadopoulos, N. G. [69 ]
Papi, A. [70 ]
Yeverino, D. R. [71 ]
Roche, N. [72 ,73 ]
机构
[1] Charite Univ Med Berlin, Inst Allergol, Berlin, Germany
[2] Free Univ Berlin, Berlin, Germany
[3] Humboldt Univ, Berlin, Germany
[4] Fraunhofer Inst Translat Med & Pharmacol ITMP, Allergol & Immunol, Berlin, Germany
[5] Univ Hosp Montpellier, Montpellier, France
[6] Univ Porto, MEDCIDS Dept Community Med Informat & Hlth Decis, Porto, Portugal
[7] Univ Porto, Fac Med, Porto, Portugal
[8] Univ Porto, CINTESIS Ctr Hlth Technol & Serv Res, Porto, Portugal
[9] Univ Porto, RISE Hlth Res Network, Porto, Portugal
[10] Barcelona Inst Global Hlth, ISGlobal, Barcelona, Spain
[11] IMIM Hosp Mar Med Res Inst, Barcelona, Spain
[12] Univ Pompeu Fabra UPF, Barcelona, Spain
[13] CIBER Epidemiol & Salud Publ CIBERESP, Barcelona, Spain
[14] Univ Torino, Dept Med Sci, Allergy & Clin Immunol Unit, Turin, Italy
[15] Mauriziano Hosp, Turin, Italy
[16] Humanitas Univ, Dept Biomed Sci, Milan, Italy
[17] Humanitas Clin & Res Ctr IRCCS, Personalized Med Asthma & Allergy, Rozzano, Italy
[18] Univ Fed Bahia, Fundacao ProAR, Salvador, BA, Brazil
[19] GARD WHO Planning Grp, Salvador, BA, Brazil
[20] Istanbul Univ Cerrahpasa, Cerrahpasa Fac Med, Dept Pulm Dis, Istanbul, Turkiye
[21] Univ Helsinki, Helsinki Univ Hosp, Skin & Allergy Hosp, Helsinki, Finland
[22] Med Univ Lodz, Barlicki Univ Hosp, Div Internal Med Asthma & Allergy, Lodz, Poland
[23] Vilnius Univ, Inst Clin Med, Fac Med, Clin Chest Dis & Allergol, Vilnius, Lithuania
[24] Vilnius Univ, Inst Biomed Sci, Fac Med, Dept Pathol, Vilnius, Lithuania
[25] Med Clin Fdn & Hosp, Ctr Excellence Asthma & Allergy, Mexico City, DF, Mexico
[26] CHU Liege, Dept Pulm Med, Liege, Belgium
[27] Univ Liege, GIGA Res Grp I3, Liege, Belgium
[28] Ecole Polytech Palaiseau, IRBA, Bretigny Sur Orge, France
[29] CHU Coimbra, Allergy & Clin Immunol Unit, Coimbra, Portugal
[30] Univ Coimbra, Coimbra Inst Clin & Biomed Res ICBR, Fac Med, Coimbra, Portugal
[31] Univ Coimbra, Inst Immunol, Fac Med, Coimbra, Portugal
[32] Med Univ Gdansk, Dept Allergol, Gdansk, Poland
[33] Univ Autonoma Madrid, Fdn Jimenez Diaz, Fac Med, CIBERES, Madrid, Spain
[34] Univ Palermo, PROMISE Dept, Palermo, Italy
[35] Cova da Beira Univ Hosp Ctr, Dept Immunoallergol, Covilha, Portugal
[36] Univ Beira Interior, UBIAir Clin & Expt Lung Ctr, Covilha, Portugal
[37] Univ Beira Interior, CICS UBI Hlth Sci Res Ctr, Covilha, Portugal
[38] Univ Bari, Med Sch, Unit Geriatr Immunoallergol, Bari, Italy
[39] Transylvania Univ Brasov, Brasov, Romania
[40] ARIA, Montpellier, France
[41] Univ Sydney, Woolcock Inst Med Res, Qual Use Resp Med Grp, Sydney, NSW, Australia
[42] Univ Sydney, Sydney, NSW, Australia
[43] Sydney Local Hlth Dist, Sydney, NSW, Australia
[44] Univ Cattolica Sacro Cuore, Dept Cardiovasc & Thorac Sci, Rome, Italy
[45] Fdn Policlin Univ A Gemelli IRCCS, Dept Clin & Surg Sci, Rome, Italy
[46] Royal Brompton Hosp, Natl Heart & Lung Inst, London, England
[47] Imperial Coll London, London, England
[48] Laval Univ, Quebec Heart & Lung Inst, Quebec City, PQ, Canada
[49] Ghent Univ Hosp, Dept Resp Med, Ghent, Belgium
[50] Mainz Univ Hosp, Dept Pulm Med, Mainz, Germany
来源
PULMONOLOGY | 2023年 / 29卷 / 04期
关键词
Asthma; Rhinitis; Cluster analysis; Treatment; Control; RHINITIS;
D O I
10.1016/j.pulmoe.2022.10.005
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Background: The self-reporting of asthma frequently leads to patient misidentification in epi-demiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app. Methods: We studied MASK-air & REG; users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale -"VAS Asthma") at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma pat-terns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels. Findings: We assessed a total of 8,075 MASK-air & REG; users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncon-trolled asthma despite treatment (11.9-16.1% of MASK-air & REG; users); (ii) treated and partly-con-trolled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classi-fication was validated in a study of 192 patients enrolled by physicians. Interpretation: We identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemio-logical approaches in identifying patients with asthma. & COPY; 2022 Sociedade Portuguesa de Pneumologia. Published by Elsevier Espana, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:292 / 305
页数:14
相关论文
共 50 条
  • [31] Fase-CPHG Study: Identification of Asthma Phenotypes in the French Severe Asthma Study Using Cluster Analysis
    Raherison-Semjen, C.
    Prudhomme, A.
    Nocent-Eijnani, C.
    Oster, J.
    Maurer, C.
    Coetmoeur, D.
    Lemaire, B.
    Didi, T.
    Parrat, E.
    Debieuvre, D.
    Portel, L.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 201
  • [32] FASE-CPHG Study: identification of asthma phenotypes in the French Severe Asthma Study using cluster analysis
    Chantal Raherison-Semjen
    Eric Parrat
    Cécilia Nocent-Eijnani
    Gilles Mangiapan
    Anne Prudhomme
    Jean-Philippe Oster
    Corinne Aperre de Vecchi
    Cyril Maurer
    Didier Debieuvre
    Laurent Portel
    Respiratory Research, 22
  • [33] FASE-CPHG Study: Identification of asthma phenotypes in the French Severe Asthma Study using cluster analysis
    Raherison-Semjen, Chantal
    Prudhomme, Anne
    Nocent-Eijnani, Cecilia
    Oster, Jean-Philippe
    Maurer, Cyril
    Coetmoeur, Daniel
    Lemaire, Bertrand
    Didi, Toufik
    Parrat, Eric
    Debieuvre, Didier
    Portel, Laurent
    EUROPEAN RESPIRATORY JOURNAL, 2018, 52
  • [34] Cluster Analysis Of Asthma Patients With Allergic Rhinitis Including Rhinitis Symptoms And Serum Periostin Levels As Variable
    Sugimoto, N.
    Nagase, H.
    Kinoshita, M.
    Sakasegawa, H.
    Esaki, T.
    Ohsumi, M.
    Koizumi, Y.
    Tanaka, Y.
    Ro, S.
    Yoshihara, H.
    Kuramochi, M.
    Arai, H.
    Yamaguchi, M.
    Izuhara, K.
    Ohta, K.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2016, 193
  • [35] The influence of nasal methylation patterns on the asthma phenotype - A cluster analysis using Uniform Manifold Approximation and Projection (UMAP)
    Buchholz, S.
    Kuenstner, A.
    Bahmer, T.
    Hansen, G.
    von Mutius, E.
    Rabe, K. F.
    Dittrich, A-M
    Schaub, B.
    Happle, C.
    Kopp, M., V
    Busch, H.
    Weckmann, M.
    KLINISCHE PADIATRIE, 2022, 234 (05): : 322 - 322
  • [36] Identification Of Clinical Asthma Phenotypes By Using Cluster Analysis With Simple Measurable Variables In Japanese Population
    Sakagami, T.
    Hasegawa, T.
    Koya, T.
    Furukawa, T.
    Kawakami, H.
    Hoshino, Y.
    Kimura, Y.
    Sakamoto, H.
    Suzuki, E.
    Narita, I.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2011, 183
  • [37] PREVALENCE OF SYMPTOMS AND CLUSTER ANALYSIS IN DIALYSIS PATIENTS USING KDQOL-36
    Galain, A., I
    Alvarez, R.
    Dapueto, J. J.
    Varela, A.
    VALUE IN HEALTH, 2014, 17 (07) : A472 - A472
  • [38] Identification of Multidimensional Phenotypes Using Cluster Analysis in Sarcoid Uveitis Patients
    Fermon, Cecile
    El-Jammal, Thomas
    Kodjikian, Laurent
    Burillon, Carole
    Hot, Arnaud
    Perard, Laurent
    Mathis, Thibaud
    Jamilloux, Yvan
    Seve, Pascal
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2022, 242 : 107 - 115
  • [39] Identification of clinical phenotypes in patients with and without COPD using cluster analysis
    Divo, Miguel
    Casanova, Ciro
    Marin, Jose M.
    Celli, Bartolome
    de Torres, Juan Pablo
    Polverino, Francesca
    Baz, Rebeca
    Cordoba-Lanus, Elizabeth
    Pinto-Plata, Victor
    EUROPEAN RESPIRATORY JOURNAL, 2016, 48
  • [40] Exploring negative symptoms heterogeneity in patients diagnosed with schizophrenia and schizoaffective disorder using cluster analysis
    Feten Fekih-Romdhane
    Romy Hajje
    Chadia Haddad
    Souheil Hallit
    Jocelyne Azar
    BMC Psychiatry, 23