FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS FOR COINTEGRATED FUNCTIONAL TIME SERIES

被引:3
|
作者
Seo, Won-Ki [1 ,2 ]
机构
[1] Univ Sydney, Sch Econ, Sydney, Australia
[2] Univ Sydney, Level 5,Social Sci Bldg, Sydney, NSW 2006, Australia
关键词
Cointegration; functional principal component analysis; functional time series; unit roots; STATIONARITY; REGRESSION;
D O I
10.1111/jtsa.12707
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Functional principal component analysis (FPCA) has played an important role in the development of functional time series analysis. This note investigates how FPCA can be used to analyze cointegrated functional time series and proposes a modification of FPCA as a novel statistical tool. Our modified FPCA not only provides an asymptotically more efficient estimator of the cointegrating vectors, but also leads to novel FPCA-based tests for examining essential properties of cointegrated functional time series.
引用
下载
收藏
页码:320 / 330
页数:11
相关论文
共 50 条
  • [31] Functional principal component analysis for incomplete space-time data
    Palummo, Alessandro
    Arnone, Eleonora
    Formaggia, Luca
    Sangalli, Laura M.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2024, 31 (02) : 555 - 582
  • [32] Supervised Sparse and Functional Principal Component Analysis
    Li, Gen
    Shen, Haipeng
    Huang, Jianhua Z.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (03) : 859 - 878
  • [33] Multilevel sparse functional principal component analysis
    Di, Chongzhi
    Crainiceanu, Ciprian M.
    Jank, Wolfgang S.
    STAT, 2014, 3 (01): : 126 - 143
  • [34] Robust principal component analysis for functional data
    Peña, D
    Prieto, J
    TEST, 1999, 8 (01) : 56 - 60
  • [35] Computational considerations in functional principal component analysis
    Francisco A. Ocaña
    Ana M. Aguilera
    Manuel Escabias
    Computational Statistics, 2007, 22 : 449 - 465
  • [36] Principal component analysis for Hilbertian functional data
    Kim, Dongwoo
    Lee, Young Kyung
    Park, Byeong U.
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (01) : 149 - 161
  • [37] Fast Multilevel Functional Principal Component Analysis
    Cui, Erjia
    Li, Ruonan
    Crainiceanu, Ciprian M.
    Xiao, Luo
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (02) : 366 - 377
  • [38] MFPCA: Multiscale Functional Principal Component Analysis
    Lin, Zhenhua
    Zhu, Hongtu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 4320 - 4327
  • [39] Computational considerations in functional principal component analysis
    Ocana, Francisco A.
    Aguilera, Ana M.
    Escabias, Manuel
    COMPUTATIONAL STATISTICS, 2007, 22 (03) : 449 - 465
  • [40] Sparse multivariate functional principal component analysis
    Song, Jun
    Kim, Kyongwon
    STAT, 2022, 11 (01):