Principal component analysis for Hilbertian functional data

被引:4
|
作者
Kim, Dongwoo [1 ]
Lee, Young Kyung [2 ]
Park, Byeong U. [1 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul, South Korea
[2] Kangwon Natl Univ, Dept Informat Stat, 1 Gangwondaehak Gil, Chuncheon Si 24341, Gangwon Do, South Korea
基金
新加坡国家研究基金会;
关键词
principal component analysis; functional data; Hilbert space;
D O I
10.29220/CSAM.2020.27.1.149
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we extend the functional principal component analysis for real-valued random functions to the case of Hilbert-space-valued functional random objects. For this, we introduce an autocovariance operator acting on the space of real-valued functions. We establish an eigendecomposition of the autocovariance operator and a Karuhnen-Loeve expansion. We propose the estimators of the eigenfunctions and the functional principal component scores, and investigate the rates of convergence of the estimators to their targets. We detail the implementation of the methodology for the cases of compositional vectors and density functions, and illustrate the method by analyzing time-varying population composition data. We also discuss an extension of the methodology to multivariate cases and develop the corresponding theory.
引用
收藏
页码:149 / 161
页数:13
相关论文
共 50 条
  • [1] Robust principal component analysis for functional data
    Peña, D
    Prieto, J
    [J]. TEST, 1999, 8 (01) : 56 - 60
  • [2] Functional principal component analysis of fMRI data
    Viviani, R
    Grön, G
    Spitzer, M
    [J]. HUMAN BRAIN MAPPING, 2005, 24 (02) : 109 - 129
  • [3] Robust principal component analysis for functional data
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Graciela Boente
    Ricardo Fraiman
    Babette Brumback
    Christophe Croux
    Jianqing Fan
    Alois Kneip
    John I. Marden
    Daniel Peña
    Javier Prieto
    Jim O. Ramsay
    Mariano J. Valderrama
    Ana M. Aguilera
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    [J]. Test, 1999, 8 (1) : 1 - 73
  • [4] Principal component analysis of infinite variance functional data
    Kokoszka, Piotr
    Kulik, Rafal
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 193
  • [5] Functional principal component analysis of spatially correlated data
    Chong Liu
    Surajit Ray
    Giles Hooker
    [J]. Statistics and Computing, 2017, 27 : 1639 - 1654
  • [6] Robust principal component analysis for functional data - Discussion
    Boente, G
    Fraiman, R
    [J]. TEST, 1999, 8 (01) : 28 - 35
  • [7] Functional principal component analysis of spatially correlated data
    Liu, Chong
    Ray, Surajit
    Hooker, Giles
    [J]. STATISTICS AND COMPUTING, 2017, 27 (06) : 1639 - 1654
  • [8] Principal component analysis of hybrid functional and vector data
    Jang, Jeong Hoon
    [J]. STATISTICS IN MEDICINE, 2021, 40 (24) : 5152 - 5173
  • [9] Nonlinear and additive principal component analysis for functional data
    Song, Jun
    Li, Bing
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 181
  • [10] Functional principal component analysis for longitudinal and survival data
    Yao, Fang
    [J]. STATISTICA SINICA, 2007, 17 (03) : 965 - 983