principal component analysis;
functional data;
Hilbert space;
D O I:
10.29220/CSAM.2020.27.1.149
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this paper we extend the functional principal component analysis for real-valued random functions to the case of Hilbert-space-valued functional random objects. For this, we introduce an autocovariance operator acting on the space of real-valued functions. We establish an eigendecomposition of the autocovariance operator and a Karuhnen-Loeve expansion. We propose the estimators of the eigenfunctions and the functional principal component scores, and investigate the rates of convergence of the estimators to their targets. We detail the implementation of the methodology for the cases of compositional vectors and density functions, and illustrate the method by analyzing time-varying population composition data. We also discuss an extension of the methodology to multivariate cases and develop the corresponding theory.
机构:
State St Global Advisors, Boston, MA USAState St Global Advisors, Boston, MA USA
Liu, Chong
Ray, Surajit
论文数: 0引用数: 0
h-index: 0
机构:
Univ Glasgow, Sch Math & Stat, Glasgow, Lanark, ScotlandState St Global Advisors, Boston, MA USA
Ray, Surajit
Hooker, Giles
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Stat Sci, New York, NY 10021 USA
Cornell Univ, Dept Biol Stat & Computat Biol, New York, NY 10021 USAState St Global Advisors, Boston, MA USA