Statistically Valid Variational Bayes Algorithm for Ising Model Parameter Estimation

被引:1
|
作者
Kim, Minwoo [1 ]
Bhattacharya, Shrijita [2 ]
Maiti, Tapabrata [2 ]
机构
[1] King Abdullah Univ Sci & Technol, Stat Program, Thuwal, Saudi Arabia
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Black box variational inference; Coupling matrix; ELBO; Kullback-Leibler distance; Posterior contraction rates; Pseudo-likelihood; Stochastic Optimization; VARIABLE SELECTION; LIKELIHOOD; INFERENCE;
D O I
10.1080/10618600.2023.2217869
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ising models originated in statistical physics and are widely used in modeling spatial data and computer vision problems. However, statistical inference of this model remains challenging due to intractable nature of the normalizing constant in the likelihood. Here, we use a pseudo-likelihood instead, to study the Bayesian estimation of two-parameter, inverse temperature and magnetization, Ising model with a fully specified coupling matrix. We develop a computationally efficient variational Bayes procedure for model estimation. Under the Gaussian mean-field variational family, we derive posterior contraction rates of the variational posterior obtained under the pseudo-likelihood. We also discuss the loss incurred due to variational posterior over true posterior for the pseudo-likelihood approach. Extensive simulation studies validate the efficacy of mean-field Gaussian and bivariate Gaussian families as the possible choices of the variational family for inference of Ising model parameters. for this article are available online.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 50 条
  • [1] Autonomous Vehicles: Vehicle Parameter Estimation Using Variational Bayes and Kinematics
    Woeber, Wilfried
    Novotny, Georg
    Mehnen, Lars
    Olaverri-Monreal, Cristina
    APPLIED SCIENCES-BASEL, 2020, 10 (18):
  • [2] A VARIATIONAL BAYES ALGORITHM FOR JOINT-SPARSE ABUNDANCE ESTIMATION
    Giampouras, Paris V.
    Themelis, Konstantinos E.
    Rontogiannis, Athanasios A.
    Koutroumbas, Konstantinos D.
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [3] JOINT NOISE DISTRIBUTION PARAMETER ESTIMATION AND LDPC DECODING USING VARIATIONAL BAYES
    Taheri, Y. Mohammad
    Ahmad, M. Omair
    Swamy, M. N. S.
    2014 IEEE 57TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2014, : 809 - 812
  • [4] Parameter Estimation for a Gas Lifting Oil Well Model Using Bayes' Rule and the MetropolisHastings Algorithm
    Ban, Zhe
    Ghaderi, Ali
    Janatian, Nima
    Pfeiffer, Carlos
    MODELING IDENTIFICATION AND CONTROL, 2022, 43 (02) : 39 - 53
  • [5] Consistency of variational Bayes inference for estimation and model selection in mixtures
    Cherief-Abdellatif, Badr-Eddine
    Alquier, Pierre
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 2995 - 3035
  • [6] A STATISTICALLY VALID MODEL OF THE MORPHOEDAPHIC INDEX
    REMPEL, RS
    COLBY, PJ
    CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 1991, 48 (10) : 1937 - 1943
  • [7] Variational Bayes Inference Algorithm for the Saturated Diagnostic Classification Model
    Kazuhiro Yamaguchi
    Kensuke Okada
    Psychometrika, 2020, 85 : 973 - 995
  • [8] VARIATIONAL BAYES INFERENCE ALGORITHM FOR THE SATURATED DIAGNOSTIC CLASSIFICATION MODEL
    Yamaguchi, Kazuhiro
    Okada, Kensuke
    PSYCHOMETRIKA, 2020, 85 (04) : 973 - 995
  • [9] Sparse Recovery Using an Iterative Variational Bayes Algorithm and Application to AoA Estimation
    Bazzi, Ahmad
    Slock, Dirk T. M.
    Meilhac, Lisa
    2016 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2016, : 197 - 202
  • [10] Variational Bayes estimation of mixing coefficients
    Wang, B
    Titterington, DM
    DETERMINISTIC AND STATISTICAL METHODS IN MACHINE LEARNING, 2005, 3635 : 281 - 295