Orbital stability of periodic standing waves of the coupled Klein-Gordon-Zakharov equations

被引:1
|
作者
Li, Qiuying [1 ]
Zheng, Xiaoxiao [2 ]
Wang, Zhenguo [3 ]
机构
[1] Huanghuai Univ, Sch Math & Stat, Zhumadian 463000, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273155, Peoples R China
[3] Taiyuan Univ, Dept Math, Taiyuan 030032, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 04期
基金
中国国家自然科学基金;
关键词
coupled Klein-Gordon-Zakharov equations; periodic standing waves; orbital stability; Floquet theory; Hamiltonian system; SOLITARY WAVES; INSTABILITY;
D O I
10.3934/math.2023430
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the orbital stability of periodic standing waves for the following coupled Klein-Gordon-Zakharov equations {u(tt) - u(xx) + u + alpha uv +beta|u|(2)u = 0, v(tt) - v(xx) = (|u|(2))(xx), where alpha > 0 and beta are two real numbers and alpha > beta. Under some suitable conditions, we show the existence of a smooth curve positive standing wave solutions of dnoidal type with a fixed fundamental period L for the above equations. Further, we obtain the stability of the dnoidal waves for the coupled Klein-Gordon-Zakharov equations by applying the abstract stability theory and combining the detailed spectral analysis given by using Lame ' equation and Floquet theory. When period L -> infinity, dnoidal type will turn into sech-type in the sense of limit. In such case, we can obtain stability of sech-type standing waves. In particular, beta = 0 is advisable, we still can show the the stability of the dnoidal type and sech-type standing waves for the classical Klein-Gordon-Zakharov equations.
引用
收藏
页码:8560 / 8579
页数:20
相关论文
共 50 条
  • [31] Galerkin finite element methods for the generalized Klein-Gordon-Zakharov equations
    Gao, Yali
    Mei, Liquan
    Li, Rui
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2466 - 2484
  • [32] Two Energy Conserving Numerical Schemes for the Klein-Gordon-Zakharov Equations
    Chen, Juan
    Zhang, Luming
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [33] GLOBAL SOLUTION TO THE KLEIN-GORDON-ZAKHAROV EQUATIONS WITH UNIFORM ENERGY BOUNDS
    Dong, Shijie
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (01) : 595 - 615
  • [34] Explicit Multisymplectic Fourier Pseudospectral Scheme for the Klein-Gordon-Zakharov Equations
    Cai Jia-Xiang
    Liang Hua
    CHINESE PHYSICS LETTERS, 2012, 29 (08)
  • [35] On the new wave behavior to the Klein-Gordon-Zakharov equations in plasma physics
    Baskonus, H. M.
    Sulaiman, T. A.
    Bulut, H.
    INDIAN JOURNAL OF PHYSICS, 2019, 93 (03) : 393 - 399
  • [36] New exact traveling wave solutions for the Klein-Gordon-Zakharov equations
    Shang, Yadong
    Huang, Yong
    Yuan, Wenjun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (05) : 1441 - 1450
  • [37] Bifurcation analysis and the travelling wave solutions of the Klein-Gordon-Zakharov equations
    Zhang, Zaiyun
    Xia, Fang-Li
    Li, Xin-Ping
    PRAMANA-JOURNAL OF PHYSICS, 2013, 80 (01): : 41 - 59
  • [38] The solitary wave solution of coupled Klein-Gordon-Zakharov equations via two different numerical methods
    Dehghan, Mehdi
    Nikpour, Ahmad
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (09) : 2145 - 2158
  • [39] NORMAL-FORM AND GLOBAL-SOLUTIONS FOR THE KLEIN-GORDON-ZAKHAROV EQUATIONS
    OZAWA, T
    TSUTAYA, K
    TSUTSUMI, Y
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1995, 12 (04): : 459 - 503
  • [40] Numerical Solution of Klein-Gordon-Zakharov Equations using Chebyshev Cardinal Functions
    Ghoreishi, M.
    Ismail, A. I. B. Md.
    Rashid, A.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (03) : 574 - 582