Orbital stability of periodic standing waves of the coupled Klein-Gordon-Zakharov equations

被引:1
|
作者
Li, Qiuying [1 ]
Zheng, Xiaoxiao [2 ]
Wang, Zhenguo [3 ]
机构
[1] Huanghuai Univ, Sch Math & Stat, Zhumadian 463000, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273155, Peoples R China
[3] Taiyuan Univ, Dept Math, Taiyuan 030032, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 04期
基金
中国国家自然科学基金;
关键词
coupled Klein-Gordon-Zakharov equations; periodic standing waves; orbital stability; Floquet theory; Hamiltonian system; SOLITARY WAVES; INSTABILITY;
D O I
10.3934/math.2023430
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the orbital stability of periodic standing waves for the following coupled Klein-Gordon-Zakharov equations {u(tt) - u(xx) + u + alpha uv +beta|u|(2)u = 0, v(tt) - v(xx) = (|u|(2))(xx), where alpha > 0 and beta are two real numbers and alpha > beta. Under some suitable conditions, we show the existence of a smooth curve positive standing wave solutions of dnoidal type with a fixed fundamental period L for the above equations. Further, we obtain the stability of the dnoidal waves for the coupled Klein-Gordon-Zakharov equations by applying the abstract stability theory and combining the detailed spectral analysis given by using Lame ' equation and Floquet theory. When period L -> infinity, dnoidal type will turn into sech-type in the sense of limit. In such case, we can obtain stability of sech-type standing waves. In particular, beta = 0 is advisable, we still can show the the stability of the dnoidal type and sech-type standing waves for the classical Klein-Gordon-Zakharov equations.
引用
收藏
页码:8560 / 8579
页数:20
相关论文
共 50 条
  • [21] Stability of the standing waves for a class of coupled nonlinear Klein-Gordon equations
    Zhang, Jian
    Gan, Zai-hui
    Guo, Bo-ling
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (03): : 427 - 442
  • [22] Normal form and global solutions for the Klein-Gordon-Zakharov equations
    Ozawa, T.
    Tsutaya, K.
    Tsutsumi, Y.
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1600, 12 (04): : 459 - 503
  • [23] Stabilization for the Klein-Gordon-Zakharov system
    Li, Weijia
    Shangguan, Yuqi
    Yan, Weiping
    ASYMPTOTIC ANALYSIS, 2023, 135 (3-4) : 305 - 348
  • [24] New Explicit and Exact Solutions for the Klein-Gordon-Zakharov Equations
    Hong Bao-jian and Sun Fu-shu(Department of Basic Courses
    Communications in Mathematical Research, 2010, 26 (02) : 97 - 104
  • [25] Transverse Orbital Stability of Periodic Traveling Waves for Nonlinear Klein-Gordon Equations
    Angulo Pava, Jaime
    Plaza, Ramon G.
    STUDIES IN APPLIED MATHEMATICS, 2016, 137 (04) : 473 - 501
  • [26] A Note on Exact Travelling Wave Solutions for the Klein-Gordon-Zakharov Equations
    Zhang, Zai-Yun
    Zhang, Ying-Hui
    Gan, Xiang-Yang
    Yu, De-Ming
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (3-4): : 167 - 172
  • [27] Global existence of small amplitude solutions for the Klein-Gordon-Zakharov equations
    Tsutaya, K
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (12) : 1373 - 1380
  • [28] Analysis of fractional Klein-Gordon-Zakharov equations using efficient method
    Benli, Fatma Berna
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (03) : 525 - 539
  • [29] From the Klein-Gordon-Zakharov system to the Klein-Gordon equation
    Daub, Markus
    Schneider, Guido
    Schratz, Katharina
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (18) : 5371 - 5380
  • [30] Soliton solutions of the Klein-Gordon-Zakharov equations with power law nonlinearity
    Triki, Houria
    Boucerredj, Noureddine
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 227 : 341 - 346