From the Klein-Gordon-Zakharov system to the Klein-Gordon equation

被引:7
|
作者
Daub, Markus [1 ]
Schneider, Guido [1 ]
Schratz, Katharina [2 ]
机构
[1] Univ Stuttgart, IADM, Stuttgart, Germany
[2] KIT, Karlsruhe, Germany
关键词
approximation; error estimates; NONLINEAR SCHRODINGER-EQUATION; LANGMUIR TURBULENCE; JUSTIFICATION;
D O I
10.1002/mma.3922
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a singular limit, the Klein-Gordon (KG) equation can be derived from the Klein-Gordon-Zakharov (KGZ) system. We point out that for the original system posed on a d-dimensional torus, the solutions of the KG equation do not approximate the solutions of the KGZ system. The KG system has to be modified to make correct predictions about the dynamics of the KGZ system. We explain that this modification is not necessary for the approximation result for the whole space Rd with d3. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:5371 / 5380
页数:10
相关论文
共 50 条
  • [1] Strong instability of standing waves for the nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system
    Ohta, Masahito
    Todorova, Grozdena
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) : 1912 - 1931
  • [2] From the Klein-Gordon-Zakharov system to the nonlinear Schrodinger equation
    Masmoudi, N
    Nakanishi, K
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (04) : 975 - 1008
  • [3] Stabilization for the Klein-Gordon-Zakharov system
    Li, Weijia
    Shangguan, Yuqi
    Yan, Weiping
    [J]. ASYMPTOTIC ANALYSIS, 2023, 135 (3-4) : 305 - 348
  • [4] NOVEL APPROACHES TO FRACTIONAL KLEIN-GORDON-ZAKHAROV EQUATION
    Wang, Kang Le
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (07)
  • [5] Non-perturbative solution of the Klein-Gordon-Zakharov equation
    Adomian, G
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1997, 81 (01) : 89 - 92
  • [6] From the Klein-Gordon-Zakharov system to a singular nonlinear Schrodinger system
    Masmoudi, Nader
    Nakanishi, Kenji
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (04): : 1073 - 1096
  • [7] Solitons and cnoidal waves of the Klein-Gordon-Zakharov equation in plasmas
    Ebadi, Ghodrat
    Krishnan, E. V.
    Biswas, Anjan
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2012, 79 (02): : 185 - 198
  • [8] On the Exact Solutions of the Klein-Gordon-Zakharov Equations
    Mhlanga, Isaiah Elvis
    Khalique, Chaudry Masood
    [J]. INTERDISCIPLINARY TOPICS IN APPLIED MATHEMATICS, MODELING AND COMPUTATIONAL SCIENCE, 2015, 117 : 301 - 307
  • [9] Extended wave solutions for a nonlinear Klein-Gordon-Zakharov system
    Shi, Qihong
    Xiao, Qian
    Liu, Xiaojun
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) : 9922 - 9929
  • [10] Orbital Instability of Standing Waves for the Klein-Gordon-Zakharov System
    甘在会
    蒋毅
    [J]. 数学进展, 2008, (01) : 118 - 120