In a singular limit, the Klein-Gordon (KG) equation can be derived from the Klein-Gordon-Zakharov (KGZ) system. We point out that for the original system posed on a d-dimensional torus, the solutions of the KG equation do not approximate the solutions of the KGZ system. The KG system has to be modified to make correct predictions about the dynamics of the KGZ system. We explain that this modification is not necessary for the approximation result for the whole space Rd with d3. Copyright (c) 2016 John Wiley & Sons, Ltd.
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Guo, Zihua
Nakanishi, Kenji
论文数: 0引用数: 0
h-index: 0
机构:
Kyoto Univ, Dept Math, Kyoto 6068502, JapanPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Nakanishi, Kenji
Wang, Shuxia
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
机构:
Univ Pune, Dept Phys, Pune 411007, Maharashtra, India
Islamic Azad Univ, Dept Phys, Urmia Branch, Oromiyeh, IranUniv Pune, Dept Phys, Pune 411007, Maharashtra, India
Golmankhaneh, Alireza K.
Golmankhaneh, Ali K.
论文数: 0引用数: 0
h-index: 0
机构:
Islamic Azad Univ, Dept Phys, Mahabad Branch, Mahabad, IranUniv Pune, Dept Phys, Pune 411007, Maharashtra, India
Golmankhaneh, Ali K.
Baleanu, Dumitru
论文数: 0引用数: 0
h-index: 0
机构:
Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
Inst Space Sci, Magurele 76900, RomaniaUniv Pune, Dept Phys, Pune 411007, Maharashtra, India