Extended wave solutions for a nonlinear Klein-Gordon-Zakharov system

被引:14
|
作者
Shi, Qihong [1 ]
Xiao, Qian [1 ]
Liu, Xiaojun [1 ]
机构
[1] Hebei Finance Univ, Dept Basic Sci, Baoding 071051, Peoples R China
关键词
KGZ system; Wave solutions; The extended methods; Rational function solutions; PERIODIC-SOLUTIONS; STANDING WAVES; TANH METHOD; SCHRODINGER; EQUATIONS; INSTABILITY; EXISTENCE; EVOLUTION; EXPLICIT; SOLITONS;
D O I
10.1016/j.amc.2012.03.079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonlinear Klein-Gordon-Zakharov (KGZ) system is used as a vehicle to employ the sine-cosine method and the extended tanh method to construct formally exact wave solutions. Each method presents various solutions with distinct formal properties and physical structures, which mainly include new periodic wave solutions, traveling wave solutions and solitary solutions. In addition, as special cases, some of new rational functions type solutions are developed and extended. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:9922 / 9929
页数:8
相关论文
共 50 条
  • [1] The solitary wave solutions to the Klein-Gordon-Zakharov equations by extended rational methods
    Yao, Shao-Wen
    Zekavatmand, Sayyed Masood
    Rezazadeh, Hadi
    Vahidi, Javad
    Ghaemi, Mohammad Bagher
    Inc, Mustafa
    [J]. AIP ADVANCES, 2021, 11 (06)
  • [2] Abundant novel wave solutions of nonlinear Klein-Gordon-Zakharov (KGZ) model
    Khater, Mostafa M. A.
    Mousa, A. A.
    El-Shorbagy, M. A.
    Attia, Raghda A. M.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (05):
  • [3] Stabilization for the Klein-Gordon-Zakharov system
    Li, Weijia
    Shangguan, Yuqi
    Yan, Weiping
    [J]. ASYMPTOTIC ANALYSIS, 2023, 135 (3-4) : 305 - 348
  • [4] On the Exact Solutions of the Klein-Gordon-Zakharov Equations
    Mhlanga, Isaiah Elvis
    Khalique, Chaudry Masood
    [J]. INTERDISCIPLINARY TOPICS IN APPLIED MATHEMATICS, MODELING AND COMPUTATIONAL SCIENCE, 2015, 117 : 301 - 307
  • [5] From the Klein-Gordon-Zakharov system to the nonlinear Schrodinger equation
    Masmoudi, N
    Nakanishi, K
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (04) : 975 - 1008
  • [6] From the Klein-Gordon-Zakharov system to a singular nonlinear Schrodinger system
    Masmoudi, Nader
    Nakanishi, Kenji
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (04): : 1073 - 1096
  • [7] A Note on Exact Travelling Wave Solutions for the Klein-Gordon-Zakharov Equations
    Zhang, Zai-Yun
    Zhang, Ying-Hui
    Gan, Xiang-Yang
    Yu, De-Ming
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (3-4): : 167 - 172
  • [8] New exact traveling wave solutions for the Klein-Gordon-Zakharov equations
    Shang, Yadong
    Huang, Yong
    Yuan, Wenjun
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (05) : 1441 - 1450
  • [9] Bifurcation analysis and the travelling wave solutions of the Klein-Gordon-Zakharov equations
    Zhang, Zaiyun
    Xia, Fang-Li
    Li, Xin-Ping
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2013, 80 (01): : 41 - 59
  • [10] From the Klein-Gordon-Zakharov system to the Klein-Gordon equation
    Daub, Markus
    Schneider, Guido
    Schratz, Katharina
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (18) : 5371 - 5380