Bifurcation analysis and the travelling wave solutions of the Klein-Gordon-Zakharov equations

被引:45
|
作者
Zhang, Zaiyun [1 ]
Xia, Fang-Li [2 ]
Li, Xin-Ping [1 ]
机构
[1] Hunan Inst Sci & Technol, Sch Math, Yueyang 414006, Hunan, Peoples R China
[2] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Hunan, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2013年 / 80卷 / 01期
关键词
Klein-Gordon-Zakharov equations; travelling wave solutions; bifurcation analysis; KERR LAW NONLINEARITY; HYPERBOLIC FUNCTION-METHOD; SCHRODINGERS EQUATION; SOLITONS; TERMS; ORDER;
D O I
10.1007/s12043-012-0357-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate the bifurcations and dynamic behaviour of travelling wave solutions of the Klein-Gordon-Zakharov equations given in Shang et al, Comput. Math. Appl. 56, 1441 (2008). Under different parameter conditions, we obtain some exact explicit parametric representations of travelling wave solutions by using the bifurcation method (Feng et al, Appl. Math. Comput. 189, 271 (2007); Li et al, Appl. Math. Comput. 175, 61 (2006)).
引用
收藏
页码:41 / 59
页数:19
相关论文
共 50 条
  • [1] Bifurcation analysis and the travelling wave solutions of the Klein–Gordon–Zakharov equations
    ZAIYUN ZHANG
    FANG-LI XIA
    XIN-PING LI
    Pramana, 2013, 80 : 41 - 59
  • [2] A Note on Exact Travelling Wave Solutions for the Klein-Gordon-Zakharov Equations
    Zhang, Zai-Yun
    Zhang, Ying-Hui
    Gan, Xiang-Yang
    Yu, De-Ming
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (3-4): : 167 - 172
  • [3] A NEW METHOD TO CONSTRUCT TRAVELLING WAVE SOLUTIONS FOR THE KLEIN-GORDON-ZAKHAROV EQUATIONS
    Zhang, Zai-Yun
    Zhong, Juan
    Dou, Sha Sha
    Liu, Jiao
    Peng, Dan
    Gao, Ting
    ROMANIAN JOURNAL OF PHYSICS, 2013, 58 (7-8): : 766 - 777
  • [4] On the Exact Solutions of the Klein-Gordon-Zakharov Equations
    Mhlanga, Isaiah Elvis
    Khalique, Chaudry Masood
    INTERDISCIPLINARY TOPICS IN APPLIED MATHEMATICS, MODELING AND COMPUTATIONAL SCIENCE, 2015, 117 : 301 - 307
  • [5] Exact explicit travelling wave solutions for (n+1)-dimensional Klein-Gordon-Zakharov equations
    Li, Jibin
    CHAOS SOLITONS & FRACTALS, 2007, 34 (03) : 867 - 871
  • [6] New exact traveling wave solutions for the Klein-Gordon-Zakharov equations
    Shang, Yadong
    Huang, Yong
    Yuan, Wenjun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (05) : 1441 - 1450
  • [7] The solitary wave solutions to the Klein-Gordon-Zakharov equations by extended rational methods
    Yao, Shao-Wen
    Zekavatmand, Sayyed Masood
    Rezazadeh, Hadi
    Vahidi, Javad
    Ghaemi, Mohammad Bagher
    Inc, Mustafa
    AIP ADVANCES, 2021, 11 (06)
  • [8] Complex traveling-wave and solitons solutions to the Klein-Gordon-Zakharov equations
    Houwe, Alphonse
    Abbagari, Souleymanou
    Salathiel, Yakada
    Inc, Mustafa
    Doka, Serge Y.
    Crepin, Kofane Timoleon
    Baleanu, Dumitru
    RESULTS IN PHYSICS, 2020, 17
  • [9] Normal form and global solutions for the Klein-Gordon-Zakharov equations
    Ozawa, T.
    Tsutaya, K.
    Tsutsumi, Y.
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1600, 12 (04): : 459 - 503
  • [10] New Explicit and Exact Solutions for the Klein-Gordon-Zakharov Equations
    Hong Bao-jian and Sun Fu-shu(Department of Basic Courses
    Communications in Mathematical Research, 2010, 26 (02) : 97 - 104