Bifurcation analysis and the travelling wave solutions of the Klein–Gordon–Zakharov equations

被引:6
|
作者
ZAIYUN ZHANG
FANG-LI XIA
XIN-PING LI
机构
[1] Hunan Institute of Science and Technology,School of Mathematics
[2] Hunan City University,School of Mathematics and Computation Sciences
来源
Pramana | 2013年 / 80卷
关键词
Klein–Gordon–Zakharov equations; travelling wave solutions; bifurcation analysis; 05.45.Yv; 2.30.Jr; 04.20.Jb;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the bifurcations and dynamic behaviour of travelling wave solutions of the Klein–Gordon–Zakharov equations given in Shang et al, Comput. Math. Appl.56, 1441 (2008). Under different parameter conditions, we obtain some exact explicit parametric representations of travelling wave solutions by using the bifurcation method (Feng et al, Appl. Math. Comput.189, 271 (2007); Li et al, Appl. Math. Comput.175, 61 (2006)).
引用
收藏
页码:41 / 59
页数:18
相关论文
共 50 条
  • [1] Bifurcation analysis and the travelling wave solutions of the Klein-Gordon-Zakharov equations
    Zhang, Zaiyun
    Xia, Fang-Li
    Li, Xin-Ping
    PRAMANA-JOURNAL OF PHYSICS, 2013, 80 (01): : 41 - 59
  • [2] A Note on Exact Travelling Wave Solutions for the Klein-Gordon-Zakharov Equations
    Zhang, Zai-Yun
    Zhang, Ying-Hui
    Gan, Xiang-Yang
    Yu, De-Ming
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (3-4): : 167 - 172
  • [3] A NEW METHOD TO CONSTRUCT TRAVELLING WAVE SOLUTIONS FOR THE KLEIN-GORDON-ZAKHAROV EQUATIONS
    Zhang, Zai-Yun
    Zhong, Juan
    Dou, Sha Sha
    Liu, Jiao
    Peng, Dan
    Gao, Ting
    ROMANIAN JOURNAL OF PHYSICS, 2013, 58 (7-8): : 766 - 777
  • [4] Exact explicit travelling wave solutions for (n+1)-dimensional Klein-Gordon-Zakharov equations
    Li, Jibin
    CHAOS SOLITONS & FRACTALS, 2007, 34 (03) : 867 - 871
  • [5] Bifurcation analysis of travelling wave solutions in the nonlinear Klein-Gordon model with anharmonic coupling
    Shen, Jianwei
    Miao, Baojun
    Guo, Lingling
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (02) : 1975 - 1983
  • [6] New travelling wave solutions to the Boussinesq and the Klein-Gordon equations
    Wazwaz, Abdul-Majid
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (05) : 889 - 901
  • [7] New exact traveling wave solutions for the Klein-Gordon-Zakharov equations
    Shang, Yadong
    Huang, Yong
    Yuan, Wenjun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (05) : 1441 - 1450
  • [8] On the Exact Solutions of the Klein-Gordon-Zakharov Equations
    Mhlanga, Isaiah Elvis
    Khalique, Chaudry Masood
    INTERDISCIPLINARY TOPICS IN APPLIED MATHEMATICS, MODELING AND COMPUTATIONAL SCIENCE, 2015, 117 : 301 - 307
  • [9] Bifurcation studies on travelling wave solutions for onlinear intensity Klein-Gordon equation
    Feng, Dahe
    Lu, Junliang
    Li, Jibin
    He, Tianlan
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) : 271 - 284