Bifurcation analysis and the travelling wave solutions of the Klein–Gordon–Zakharov equations

被引:6
|
作者
ZAIYUN ZHANG
FANG-LI XIA
XIN-PING LI
机构
[1] Hunan Institute of Science and Technology,School of Mathematics
[2] Hunan City University,School of Mathematics and Computation Sciences
来源
Pramana | 2013年 / 80卷
关键词
Klein–Gordon–Zakharov equations; travelling wave solutions; bifurcation analysis; 05.45.Yv; 2.30.Jr; 04.20.Jb;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the bifurcations and dynamic behaviour of travelling wave solutions of the Klein–Gordon–Zakharov equations given in Shang et al, Comput. Math. Appl.56, 1441 (2008). Under different parameter conditions, we obtain some exact explicit parametric representations of travelling wave solutions by using the bifurcation method (Feng et al, Appl. Math. Comput.189, 271 (2007); Li et al, Appl. Math. Comput.175, 61 (2006)).
引用
收藏
页码:41 / 59
页数:18
相关论文
共 50 条
  • [31] Bifurcation of travelling wave solutions for the generalized ZK equations
    Wang, Zhaojuan
    Tang, Shengqiang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) : 2018 - 2024
  • [32] NORMAL-FORM AND GLOBAL-SOLUTIONS FOR THE KLEIN-GORDON-ZAKHAROV EQUATIONS
    OZAWA, T
    TSUTAYA, K
    TSUTSUMI, Y
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1995, 12 (04): : 459 - 503
  • [33] The Klein-Gordon-Zakharov equations with the positive fractional power terms and their exact solutions
    Zhang, Jinliang
    Hu, Wuqiang
    Ma, Yu
    PRAMANA-JOURNAL OF PHYSICS, 2016, 87 (06):
  • [34] Solitary wave propagation and interactions for the Klein-Gordon-Zakharov equations in plasma physics
    Wang, Jian
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (08)
  • [35] ABUNDANT EXACT TRAVELLING WAVE SOLUTIONS FOR THE KLEIN-GORDON-ZAKHAROV EQUATIONS VIA THE tanh-coth EXPANSION METHOD AND JACOBI ELLIPTIC FUNCTION EXPANSION METHOD
    Zhang, Zai-Yun
    Zhong, Juan
    Dou, Sha Sha
    Liu, Jiao
    Peng, Dan
    Gao, Ting
    ROMANIAN JOURNAL OF PHYSICS, 2013, 58 (7-8): : 749 - 765
  • [36] Analysis of fractional Klein-Gordon-Zakharov equations using efficient method
    Benli, Fatma Berna
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (03) : 525 - 539
  • [37] Abundant novel wave solutions of nonlinear Klein-Gordon-Zakharov (KGZ) model
    Khater, Mostafa M. A.
    Mousa, A. A.
    El-Shorbagy, M. A.
    Attia, Raghda A. M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (05):
  • [38] The periodic wave solutions for the Klein-Gordon-Schrodinger equations
    Wang, ML
    Zhou, YB
    PHYSICS LETTERS A, 2003, 318 (1-2) : 84 - 92
  • [39] New solitary waves for the Klein-Gordon-Zakharov equations
    Nestor, Savaissou
    Houwe, Alphonse
    Rezazadeh, Hadi
    Bekir, Ahmet
    Betchewe, Gambo
    Doka, Serge Y.
    MODERN PHYSICS LETTERS B, 2020, 34 (23):
  • [40] Conservative difference methods for the Klein-Gordon-Zakharov equations
    Wang, Tingchun
    Chen, Juan
    Zhang, Luming
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) : 430 - 452