Non-uniqueness Phase of Percolation on Reflection Groups in H3

被引:0
|
作者
Czajkowski, Jan [1 ,2 ,3 ,4 ,5 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Hoene Wronskiego 13c, PL-50376 Wroclaw, Poland
[2] Univ Wroclaw, Math Inst, Pl Grunwaldzki 2, PL-50384 Wroclaw, Poland
[3] Consejo Nacl Invest Cient & Tecn, Luis A Santalo Math Res Inst, Ciudad Univ,C1428EGA, Buenos Aires, Argentina
[4] UBA, Ciudad Univ,C1428EGA, Buenos Aires, Argentina
[5] Cracow Univ Technol, Fac Comp Sci & Telecommun, Ul Warszawska 24, PL-31155 Krakow, Poland
关键词
Percolation; Coxeter groups; Hyperbolic space; Spectral radius; Gabber's lemma; Growth series; INFINITE CLUSTERS; RANDOM-WALKS; GROWTH;
D O I
10.1007/s10959-024-01313-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Bernoulli bond and site percolation on Cayley graphs of reflection groups in the three-dimensional hyperbolic space H(3 )corresponding to a very large class of Coxeter polyhedra. In such setting, we prove the existence of a non-empty non-uniqueness percolation phase, i.e. that pc < pu. This means that for some values of the Bernoulli percolation parameter there are a.s. infinitely many infinite components in the percolation subgraph. The proof relies on upper estimates for the spectral radius of the graph and on a lower estimate for its growth rate. The latter estimate involves only the number of generators of the group and is proved in the article as well.
引用
收藏
页码:2534 / 2575
页数:42
相关论文
共 50 条