Non-uniqueness Phase of Percolation on Reflection Groups in H3

被引:0
|
作者
Czajkowski, Jan [1 ,2 ,3 ,4 ,5 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Hoene Wronskiego 13c, PL-50376 Wroclaw, Poland
[2] Univ Wroclaw, Math Inst, Pl Grunwaldzki 2, PL-50384 Wroclaw, Poland
[3] Consejo Nacl Invest Cient & Tecn, Luis A Santalo Math Res Inst, Ciudad Univ,C1428EGA, Buenos Aires, Argentina
[4] UBA, Ciudad Univ,C1428EGA, Buenos Aires, Argentina
[5] Cracow Univ Technol, Fac Comp Sci & Telecommun, Ul Warszawska 24, PL-31155 Krakow, Poland
关键词
Percolation; Coxeter groups; Hyperbolic space; Spectral radius; Gabber's lemma; Growth series; INFINITE CLUSTERS; RANDOM-WALKS; GROWTH;
D O I
10.1007/s10959-024-01313-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Bernoulli bond and site percolation on Cayley graphs of reflection groups in the three-dimensional hyperbolic space H(3 )corresponding to a very large class of Coxeter polyhedra. In such setting, we prove the existence of a non-empty non-uniqueness percolation phase, i.e. that pc < pu. This means that for some values of the Bernoulli percolation parameter there are a.s. infinitely many infinite components in the percolation subgraph. The proof relies on upper estimates for the spectral radius of the graph and on a lower estimate for its growth rate. The latter estimate involves only the number of generators of the group and is proved in the article as well.
引用
收藏
页码:2534 / 2575
页数:42
相关论文
共 50 条
  • [31] Infinite Groups Containing a Proper Hughes Subgroup H3(G)
    W. Guo
    D. V. Lytkina
    V. D. Mazurov
    Algebra and Logic, 2021, 60 : 196 - 199
  • [32] Infinite Groups Containing a Proper Hughes Subgroup H3(G)
    Guo, W.
    Lytkina, D., V
    Mazurov, V. D.
    ALGEBRA AND LOGIC, 2021, 60 (03) : 196 - 199
  • [33] PHASE SHIFT ANALYSIS OF H3(P,P),H3(P,N) AND HE3(N,N) REACTIONS
    MEYERHOF, WE
    MCELEARNEY, JN
    NUCLEAR PHYSICS, 1965, 74 (03): : 533 - +
  • [34] Slowly Vanishing Mean Oscillations: Non-uniqueness of Blow-ups in a Two-phase Free Boundary Problem
    Badger, Matthew
    Engelstein, Max
    Toro, Tatiana
    VIETNAM JOURNAL OF MATHEMATICS, 2024, 52 (03) : 615 - 625
  • [35] Sharp non-uniqueness for the 3D hyperdissipative Navier-Stokes equations: Beyond the Lions exponent
    Li, Yachun
    Qu, Peng
    Zeng, Zirong
    Zhang, Deng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 190
  • [36] SHARP NON-UNIQUENESS FOR THE 3D HYPERDISSIPATIVE NAVIER-STOKES EQUATIONS: ABOVE THE LIONS EXPONENT
    Li, Yachun
    Qu, Peng
    Zeng, Zirong
    Zhang, Deng
    arXiv, 2022,
  • [37] Investigations of Type 3 non-uniqueness in standard platinum resistance thermometers between 83 K and 353 K
    Veltcheva, Radka
    Izquierdo, Carmen Garcia
    Rusby, Richard
    Pearce, Jonathan
    Gomez, Elena
    Kowal, Aleksandra
    MEASUREMENT, 2023, 216
  • [39] Type 3 Non-uniqueness in Interpolations Using Standard Platinum Resistance Thermometers Between − 196 °C and 100 °C
    R. L. Rusby
    H. Stemp
    J. V. Pearce
    R. I. Veltcheva
    International Journal of Thermophysics, 2019, 40
  • [40] Global Existence and Non-Uniqueness for 3D Navier–Stokes Equations with Space-Time White Noise
    Martina Hofmanová
    Rongchan Zhu
    Xiangchan Zhu
    Archive for Rational Mechanics and Analysis, 2023, 247 (3)