Non-uniqueness Phase of Percolation on Reflection Groups in H3

被引:0
|
作者
Czajkowski, Jan [1 ,2 ,3 ,4 ,5 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Hoene Wronskiego 13c, PL-50376 Wroclaw, Poland
[2] Univ Wroclaw, Math Inst, Pl Grunwaldzki 2, PL-50384 Wroclaw, Poland
[3] Consejo Nacl Invest Cient & Tecn, Luis A Santalo Math Res Inst, Ciudad Univ,C1428EGA, Buenos Aires, Argentina
[4] UBA, Ciudad Univ,C1428EGA, Buenos Aires, Argentina
[5] Cracow Univ Technol, Fac Comp Sci & Telecommun, Ul Warszawska 24, PL-31155 Krakow, Poland
关键词
Percolation; Coxeter groups; Hyperbolic space; Spectral radius; Gabber's lemma; Growth series; INFINITE CLUSTERS; RANDOM-WALKS; GROWTH;
D O I
10.1007/s10959-024-01313-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Bernoulli bond and site percolation on Cayley graphs of reflection groups in the three-dimensional hyperbolic space H(3 )corresponding to a very large class of Coxeter polyhedra. In such setting, we prove the existence of a non-empty non-uniqueness percolation phase, i.e. that pc < pu. This means that for some values of the Bernoulli percolation parameter there are a.s. infinitely many infinite components in the percolation subgraph. The proof relies on upper estimates for the spectral radius of the graph and on a lower estimate for its growth rate. The latter estimate involves only the number of generators of the group and is proved in the article as well.
引用
收藏
页码:2534 / 2575
页数:42
相关论文
共 50 条
  • [21] On the non-uniqueness of weak solutions of the nonlinear heat equation with nonlinearity u3
    Terraneo, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (09): : 759 - 762
  • [22] Non-uniqueness results for entropy two-phase solutions of forward-backward parabolic problems with unstable phase
    Terracina, Andrea
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 413 (02) : 963 - 975
  • [23] Geometric phase effects in H3 predissociation
    Lepetit, Bruno
    Abrol, Ravinder
    Kuppermann, Aron
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [24] Global existence and non-uniqueness of 3D Euler equations perturbed by transport noise
    Martina Hofmanová
    Theresa Lange
    Umberto Pappalettera
    Probability Theory and Related Fields, 2024, 188 : 1183 - 1255
  • [25] Global existence and non-uniqueness of 3D Euler equations perturbed by transport noise
    Hofmanova, Martina
    Lange, Theresa
    Pappalettera, Umberto
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 188 (3-4) : 1183 - 1255
  • [26] Considerations Relating to Type 1 and Type 3 Non-uniqueness in SPRT Interpolations of the ITS-90
    Rusby, R. L.
    Pearce, J. V.
    Elliott, C. J.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2017, 38 (12)
  • [27] Considerations Relating to Type 1 and Type 3 Non-uniqueness in SPRT Interpolations of the ITS-90
    R. L. Rusby
    J. V. Pearce
    C. J. Elliott
    International Journal of Thermophysics, 2017, 38
  • [28] Sharp non-uniqueness of weak solutions to 3D magnetohydrodynamic equations: Beyond the Lions exponent
    Li, Yachun
    Zeng, Zirong
    Zhang, Deng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (07)
  • [29] Uniqueness of the modified Schrodinger map in H3/4+ε (R2)
    Kato, Jun
    Koch, Herbert
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (03) : 415 - 429
  • [30] A study on ITS-90 type 3 non-uniqueness between freezing points of Al and Ag
    Coppa, Graziano
    Merlone, Andrea
    MEASUREMENT, 2016, 89 : 109 - 113