Uniqueness and non-uniqueness in percolation theory

被引:44
|
作者
Haggstrom, Olle [1 ]
Jonasson, Johan [1 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, S-41296 Gothenburg, Sweden
来源
PROBABILITY SURVEYS | 2006年 / 3卷
基金
瑞典研究理事会;
关键词
percolation; uniqueness of the infinite cluster; transitive graphs; amenability;
D O I
10.1214/154957806000000096
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is an up-to-date introduction to the problem of uniqueness versus non-uniqueness of infinite clusters for percolation on Z(d) and, more generally, on transitive graphs. For iid percolation on Z(d), uniqueness of the infinite cluster is a classical result, while on certain other transitive graphs uniqueness may fail. Key properties of the graphs in this context turn out to be amenability and nonamenability. The same problem is considered for certain dependent percolation models - most prominently the Fortuin-Kasteleyn random-cluster model - and in situations where the standard connectivity notion is replaced by entanglement or rigidity. So-called simultaneous uniqueness in couplings of percolation processes is also considered. Some of the main results are proved in detail, while for others the proofs are merely sketched, and for yet others they are omitted. Several open problems are discussed.
引用
收藏
页码:289 / 344
页数:56
相关论文
共 50 条
  • [1] On non-uniqueness of percolation on nonamenable Cayley graphs
    Pak, I
    Smirnova-Nagnibeda, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (06): : 495 - 500
  • [2] PROBLEM OF NON-UNIQUENESS IN THEORY OF PLASTICITY
    CHEREPAN.GP
    DOKLADY AKADEMII NAUK SSSR, 1974, 218 (04): : 779 - 782
  • [3] Fourier Uniqueness and Non-Uniqueness Pairs
    Kulikov, Aleksei
    Nazarov, Fedor
    So, Mikhail
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2025, 21 (01) : 84 - 130
  • [4] On the non-uniqueness problem in integrated information theory
    Hanson, Jake R.
    Walker, Sara, I
    NEUROSCIENCE OF CONSCIOUSNESS, 2023, 2023 (01)
  • [5] On the non-uniqueness of solution in surface elasticity theory
    Zhu, J.
    Ru, C. Q.
    Chen, W. Q.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2012, 17 (04) : 329 - 337
  • [6] ON SOLUTION NON-UNIQUENESS IN THE NONLINEAR ELASTICITY THEORY
    Kulikovskii, A. G.
    Chugainova, A. P.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2009, 19 (1-2) : 93 - 97
  • [7] Uniqueness and Non-Uniqueness Results for Spacetime Extensions
    Sbierski, Jan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (20) : 13221 - 13254
  • [8] A NOTE ON NON-UNIQUENESS IN LINEAR ELASTICITY THEORY
    EDELSTEIN, WS
    FOSDICK, RL
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (06): : 906 - +
  • [9] On solution non-uniqueness in the nonlinear elasticity theory
    Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina St. 8, Moscow 119991, Russia
    Rev. Adv. Mater. Sci., 2009, 1-2 (93-97):
  • [10] NON-UNIQUENESS IN PHONOLOGY
    RUBACH, J
    LINGUA, 1978, 44 (01) : 49 - 66