Graph Contrastive Learning with Positional Representation for Recommendation

被引:4
|
作者
Yi, Zixuan [1 ]
Ounis, Iadh [1 ]
Macdonald, Craig [1 ]
机构
[1] Univ Glasgow, Glasgow, Scotland
关键词
D O I
10.1007/978-3-031-28238-6_19
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, graph neural networks have become the state-of-the-art in collaborative filtering, since the interactions between users and items essentially have a graph structure. However, a major issue with the user-item interaction graph in recommendation is the absence of the positional information of users/items, which limits the expressive power of graph recommenders in distinguishing the users/items with the same neighbours after propagating several graph convolution layers. Such a phenomenon further induces the well-known over-smoothing problem. We hypothesise that we can obtain a more expressive graph recommender through graph positional encoding (e.g., Laplacian eigenvector) thereby also alleviating the over-smoothing problem. Hence, we propose a novel model named Positional Graph Contrastive Learning (PGCL) for top-K recommendation, which aims to explicitly enhance graph representation learning with graph positional encoding in a contrastive learning manner. We show that concatenating the learned graph positional encoding and the pre-existing users/items' features in each feature propagation layer can achieve significant effectiveness gains. To further have sufficient representation learning from the graph positional encoding, we use contrastive learning to jointly learn the correlation between the pre-exiting users/items' features and the positional information. Our extensive experiments conducted on three benchmark datasets demonstrate the superiority of our proposed PGCL model over existing state-of-the-art graph-based recommendation approaches in terms of both effectiveness and alleviating the over-smoothing problem.
引用
收藏
页码:288 / 303
页数:16
相关论文
共 50 条
  • [1] Multi-view graph contrastive representation learning for bundle recommendation
    Zhang, Peng
    Niu, Zhendong
    Ma, Ru
    Zhang, Fuzhi
    INFORMATION PROCESSING & MANAGEMENT, 2025, 62 (01)
  • [2] Prototypical Graph Contrastive Learning for Recommendation
    Wei, Tao
    Yang, Changchun
    Zheng, Yanqi
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [3] Adaptive Graph Contrastive Learning for Recommendation
    Jiang, Yangqin
    Huang, Chao
    Xia, Lianghao
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 4252 - 4261
  • [4] Contrastive Graph Learning for Social Recommendation
    Zhang, Yongshuai
    Huang, Jiajin
    Li, Mi
    Yang, Jian
    FRONTIERS IN PHYSICS, 2022, 10
  • [5] Knowledge Graph Contrastive Learning for Recommendation
    Yang, Yuhao
    Huang, Chao
    Xia, Lianghao
    Li, Chenliang
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 1434 - 1443
  • [6] DCL: Diversified Graph Recommendation With Contrastive Learning
    Su, Daohan
    Fan, Bowen
    Zhang, Zhi
    Fu, Haoyan
    Qin, Zhida
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (03) : 4114 - 4126
  • [7] Graph Contrastive Learning on Complementary Embedding for Recommendation
    Liu, Meishan
    Jian, Meng
    Shi, Ge
    Xiang, Ye
    Wu, Lifang
    PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023, 2023, : 576 - 580
  • [8] Generative-Contrastive Graph Learning for Recommendation
    Yang, Yonghui
    Wu, Zhengwei
    Wu, Le
    Zhang, Kun
    Hong, Richang
    Zhang, Zhiqiang
    Zhou, Jun
    Wang, Meng
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1117 - 1126
  • [9] Temporal Graph Contrastive Learning for Sequential Recommendation
    Zhang, Shengzhe
    Chen, Liyi
    Wang, Chao
    Li, Shuangli
    Xiong, Hui
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 9359 - 9367
  • [10] Subgraph Collaborative Graph Contrastive Learning for Recommendation
    Ma, Jie
    Qin, Jiwei
    Ji, Peichen
    Yang, Zhibin
    Zhang, Donghao
    Liu, Chaoqun
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT IX, 2024, 15024 : 105 - 120