Graph Contrastive Learning with Positional Representation for Recommendation

被引:4
|
作者
Yi, Zixuan [1 ]
Ounis, Iadh [1 ]
Macdonald, Craig [1 ]
机构
[1] Univ Glasgow, Glasgow, Scotland
关键词
D O I
10.1007/978-3-031-28238-6_19
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, graph neural networks have become the state-of-the-art in collaborative filtering, since the interactions between users and items essentially have a graph structure. However, a major issue with the user-item interaction graph in recommendation is the absence of the positional information of users/items, which limits the expressive power of graph recommenders in distinguishing the users/items with the same neighbours after propagating several graph convolution layers. Such a phenomenon further induces the well-known over-smoothing problem. We hypothesise that we can obtain a more expressive graph recommender through graph positional encoding (e.g., Laplacian eigenvector) thereby also alleviating the over-smoothing problem. Hence, we propose a novel model named Positional Graph Contrastive Learning (PGCL) for top-K recommendation, which aims to explicitly enhance graph representation learning with graph positional encoding in a contrastive learning manner. We show that concatenating the learned graph positional encoding and the pre-existing users/items' features in each feature propagation layer can achieve significant effectiveness gains. To further have sufficient representation learning from the graph positional encoding, we use contrastive learning to jointly learn the correlation between the pre-exiting users/items' features and the positional information. Our extensive experiments conducted on three benchmark datasets demonstrate the superiority of our proposed PGCL model over existing state-of-the-art graph-based recommendation approaches in terms of both effectiveness and alleviating the over-smoothing problem.
引用
收藏
页码:288 / 303
页数:16
相关论文
共 50 条
  • [41] A Knowledge Graph Recommendation Approach Incorporating Contrastive and Relationship Learning
    Shen, Xintao
    Zhang, Yulai
    IEEE ACCESS, 2023, 11 : 99628 - 99637
  • [42] Multimodal Graph Contrastive Learning for Multimedia-Based Recommendation
    Liu, Kang
    Xue, Feng
    Guo, Dan
    Sun, Peijie
    Qian, Shengsheng
    Hong, Richang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 9343 - 9355
  • [43] HCL: Hybrid Contrastive Learning for Graph-based Recommendation
    Ma, Xiyao
    Gao, Zheng
    Hu, Qian
    AbdelHady, Mohamed
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [44] Graph Contrastive Learning via Hierarchical Multiview Enhancement for Recommendation
    Liu, Zhi
    Xiang, Hengjing
    Liang, Ruxia
    Xiang, Jinhai
    Wen, Chaodong
    Liu, Sannyuya
    Sun, Jianwen
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (03) : 2403 - 2412
  • [45] Multi-contrastive Learning Recommendation Combined with Knowledge Graph
    Chen, Fei
    Kang, Zihan
    Zhang, Chenxi
    Wu, Chunming
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [46] Adaptive multi-graph contrastive learning for bundle recommendation
    Tao, Qian
    Liu, Chenghao
    Xia, Yuhan
    Xu, Yong
    Li, Lusi
    NEURAL NETWORKS, 2025, 181
  • [47] XSimGCL: Towards Extremely Simple Graph Contrastive Learning for Recommendation
    Yu, Junliang
    Xia, Xin
    Chen, Tong
    Cui, Lizhen
    Hung, Nguyen Quoc Viet
    Yin, Hongzhi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (02) : 913 - 926
  • [48] Long-Tail Augmented Graph Contrastive Learning for Recommendation
    Zhao, Qian
    Wu, Zhengwei
    Zhang, Zhiqiang
    Zhou, Jun
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT IV, 2023, 14172 : 387 - 403
  • [49] Contrastive Graph Structure Learning via Information Bottleneck for Recommendation
    Wei, Chunyu
    Liang, Jian
    Liu, Di
    Wang, Fei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [50] Social Relation Enhanced Heterogeneous Graph Contrastive Learning for Recommendation
    Wang, Jiaxi
    Wang, Bingce
    Zhang, Liwen
    Mo, Tong
    Li, Weiping
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT VI, DASFAA 2024, 2024, 14855 : 19 - 34