Graph Contrastive Learning with Positional Representation for Recommendation

被引:4
|
作者
Yi, Zixuan [1 ]
Ounis, Iadh [1 ]
Macdonald, Craig [1 ]
机构
[1] Univ Glasgow, Glasgow, Scotland
关键词
D O I
10.1007/978-3-031-28238-6_19
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, graph neural networks have become the state-of-the-art in collaborative filtering, since the interactions between users and items essentially have a graph structure. However, a major issue with the user-item interaction graph in recommendation is the absence of the positional information of users/items, which limits the expressive power of graph recommenders in distinguishing the users/items with the same neighbours after propagating several graph convolution layers. Such a phenomenon further induces the well-known over-smoothing problem. We hypothesise that we can obtain a more expressive graph recommender through graph positional encoding (e.g., Laplacian eigenvector) thereby also alleviating the over-smoothing problem. Hence, we propose a novel model named Positional Graph Contrastive Learning (PGCL) for top-K recommendation, which aims to explicitly enhance graph representation learning with graph positional encoding in a contrastive learning manner. We show that concatenating the learned graph positional encoding and the pre-existing users/items' features in each feature propagation layer can achieve significant effectiveness gains. To further have sufficient representation learning from the graph positional encoding, we use contrastive learning to jointly learn the correlation between the pre-exiting users/items' features and the positional information. Our extensive experiments conducted on three benchmark datasets demonstrate the superiority of our proposed PGCL model over existing state-of-the-art graph-based recommendation approaches in terms of both effectiveness and alleviating the over-smoothing problem.
引用
收藏
页码:288 / 303
页数:16
相关论文
共 50 条
  • [21] MDGCL: Message Dropout Graph Contrastive Learning for Recommendation
    Xu, Qijia
    Li, Wei
    Chen, Jingxin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14864 : 60 - 71
  • [22] Information-Controllable Graph Contrastive Learning for Recommendation
    Guo, Zirui
    Yu, Yanhua
    Wang, Yuling
    Lu, Kangkang
    Yang, Zixuan
    Pang, Liang
    Chua, Tat-Seng
    PROCEEDINGS OF THE EIGHTEENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2024, 2024, : 528 - 537
  • [23] Supervised contrastive learning for graph representation enhancement
    Ghayekhloo, Mohadeseh
    Nickabadi, Ahmad
    NEUROCOMPUTING, 2024, 588
  • [24] Mixed Augmentation Contrastive Learning for Graph Recommendation System
    Dong, Zhuolun
    Yang, Yan
    Zhong, Yingli
    WEB AND BIG DATA, APWEB-WAIM 2024, PT II, 2024, 14962 : 130 - 143
  • [25] Candidate-aware Graph Contrastive Learning for Recommendation
    He, Wei
    Sun, Guohao
    Lu, Jinhu
    Fang, Xiu Susie
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1670 - 1679
  • [26] SSGCL: Simple Social Recommendation with Graph Contrastive Learning
    Duan, Zhihua
    Wang, Chun
    Zhong, Wending
    MATHEMATICS, 2024, 12 (07)
  • [27] Contrastive Graph Semantic Learning via prototype for recommendation
    Wen, Mi
    Wang, Hongwei
    Li, Weiwei
    Fan, Zizhu
    Yu, Xiaoqing
    INFORMATION SCIENCES, 2025, 699
  • [28] Higher-Order Graph Contrastive Learning for Recommendation
    Zheng, ZhenZhong
    Li, Jianxin
    Wu, Xiaoming
    Liu, Xiangzhi
    Pei, Lili
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT VI, DASFAA 2024, 2024, 14855 : 35 - 51
  • [29] Video Representation Learning with Graph Contrastive Augmentation
    Zhang, Jingran
    Xu, Xing
    Shen, Fumin
    Yao, Yazhou
    Shao, Jie
    Zhu, Xiaofeng
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3043 - 3051
  • [30] Graph contrastive learning for recommendation with generative data augmentation
    Li, Xiaoge
    Wang, Yin
    Wang, Yihan
    An, Xiaochun
    MULTIMEDIA SYSTEMS, 2024, 30 (04)