Generative-Contrastive Graph Learning for Recommendation

被引:7
|
作者
Yang, Yonghui [1 ]
Wu, Zhengwei [2 ]
Wu, Le [1 ]
Zhang, Kun [1 ]
Hong, Richang [1 ]
Zhang, Zhiqiang [2 ]
Zhou, Jun [2 ]
Wang, Meng [1 ,3 ]
机构
[1] Hefei Univ Technol, Key Lab Knowledge Engn Big Data, Hefei, Peoples R China
[2] Ant Grp, Hangzhou, Peoples R China
[3] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
Collaborative Filtering; Recommendation; Generative Learning; Graph Contrastive Learning;
D O I
10.1145/3539618.3591691
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By treating users' interactions as a user-item graph, graph learning models have been widely deployed in Collaborative Filtering (CF) based recommendation. Recently, researchers have introduced Graph Contrastive Learning (GCL) techniques into CF to alleviate the sparse supervision issue, which first constructs contrastive views by data augmentations and then provides self-supervised signals by maximizing the mutual information between contrastive views. Despite the effectiveness, we argue that current GCL-based recommendation models are still limited as current data augmentation techniques, either structure augmentation or feature augmentation. First, structure augmentation randomly dropout nodes or edges, which is easy to destroy the intrinsic nature of the user-item graph. Second, feature augmentation imposes the same scale noise augmentation on each node, which neglects the unique characteristics of nodes on the graph. To tackle the above limitations, we propose a novel Variational Graph Generative-Contrastive Learning (VGCL) framework for recommendation. Specifically, we leverage variational graph reconstruction to estimate a Gaussian distribution of each node, then generate multiple contrastive views through multiple samplings from the estimated distributions, which builds a bridge between generative and contrastive learning. The generated contrastive views can well reconstruct the input graph without information distortion. Besides, the estimated variances are tailored to each node, which regulates the scale of contrastive loss for each node on optimization. Considering the similarity of the estimated distributions, we propose a cluster-aware twofold contrastive learning, a node-level to encourage consistency of a node's contrastive views and a cluster-level to encourage consistency of nodes in a cluster. Finally, extensive experimental results on three public datasets clearly demonstrate the effectiveness of the proposed model.
引用
收藏
页码:1117 / 1126
页数:10
相关论文
共 50 条
  • [1] Motif-Aware Riemannian Graph Neural Network with Generative-Contrastive Learning
    Sun, Li
    Huang, Zhenhao
    Wang, Zixi
    Wang, Feiyang
    Peng, Hao
    Yu, Philip
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 9044 - 9052
  • [2] Graph contrastive learning for recommendation with generative data augmentation
    Li, Xiaoge
    Wang, Yin
    Wang, Yihan
    An, Xiaochun
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [3] Adaptive Graph Contrastive Learning for Recommendation
    Jiang, Yangqin
    Huang, Chao
    Xia, Lianghao
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 4252 - 4261
  • [4] Contrastive Graph Learning for Social Recommendation
    Zhang, Yongshuai
    Huang, Jiajin
    Li, Mi
    Yang, Jian
    FRONTIERS IN PHYSICS, 2022, 10
  • [5] Knowledge Graph Contrastive Learning for Recommendation
    Yang, Yuhao
    Huang, Chao
    Xia, Lianghao
    Li, Chenliang
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 1434 - 1443
  • [6] Debunk online rumors via generative-contrastive learning based on tree-transformer
    Luo, Xi
    Deng, Yuhui
    Liu, Junjie
    Wu, Sirong
    Sun, Gengchen
    2023 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE TESTING, AITEST, 2023, : 152 - 159
  • [7] Graph Contrastive Learning with Generative Adversarial Network
    Wu, Cheng
    Wang, Chaokun
    Xu, Jingcao
    Liu, Ziyang
    Zheng, Kai
    Wang, Xiaowei
    Song, Yang
    Gai, Kun
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2721 - 2730
  • [8] DCL: Diversified Graph Recommendation With Contrastive Learning
    Su, Daohan
    Fan, Bowen
    Zhang, Zhi
    Fu, Haoyan
    Qin, Zhida
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (03) : 4114 - 4126
  • [9] Graph Contrastive Learning on Complementary Embedding for Recommendation
    Liu, Meishan
    Jian, Meng
    Shi, Ge
    Xiang, Ye
    Wu, Lifang
    PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023, 2023, : 576 - 580
  • [10] Graph Contrastive Learning with Positional Representation for Recommendation
    Yi, Zixuan
    Ounis, Iadh
    Macdonald, Craig
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT II, 2023, 13981 : 288 - 303