Solvability of a mixed problem with the integral gluing condition for a loaded equation with the Riemann-Liouville fractional operator

被引:3
|
作者
Baltaeva, Umida [1 ,2 ]
Babajanova, Yulduz [3 ]
Agarwal, Praveen [4 ,5 ]
Ozdemir, Necati [6 ]
机构
[1] Khorezm Mamun Acad, Khorezm, Uzbekistan
[2] Urgench State Univ, Dept Appl Math & Math Phys, Urgench, Uzbekistan
[3] Urgench State Univ, Dept Math Engn, Urgench, Uzbekistan
[4] Anand Int Coll Engn, Dept Math, Appl Nonlinear Sci Lab, Jaipur 303012, India
[5] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman, U Arab Emirates
[6] Balikesir Univ, Dept Math, Balikesir, Turkiye
关键词
Mixed type equation; Parabolic-hyperbolic type; Boundary -value problem; Integral condition; Riemann-Liouville fractional derivatives; BOUNDARY-VALUE PROBLEM;
D O I
10.1016/j.cam.2023.115066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study boundary value problems with an integral gluing condition for a loaded equation of parabolic-hyperbolic type. The existence and uniqueness of the problem under study are proved based on the unique solvability obtained from integral and loaded integral equations.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Dimension of Riemann-Liouville fractional integral of Takagi function
    Liu, Ning
    Yao, Kui
    Liang, Yong Shun
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 2376 - 2380
  • [42] The Solutions of Some Riemann-Liouville Fractional Integral Equations
    Kaewnimit, Karuna
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Orankitjaroen, Somsak
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [43] (k, s)-Riemann-Liouville fractional integral and applications
    Sarikaya, Mehmet Zeki
    Dahmani, Zoubir
    Kiris, Mehmet Eyup
    Ahmad, Farooq
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (01): : 77 - 89
  • [44] CAUCHY PROBLEM FOR A PARABOLIC EQUATION WITH BESSEL OPERATOR AND RIEMANN-LIOUVILLE PARTIAL DERIVATIVE
    Khushtova, F. G.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2016, 20 (01): : 74 - 84
  • [45] Nonlinear fractional Caputo-Langevin equation with nonlocal Riemann-Liouville fractional integral conditions
    Weera Yukunthorn
    Sotiris K Ntouyas
    Jessada Tariboon
    Advances in Difference Equations, 2014
  • [46] A NOTE ON FRACTAL DIMENSION OF RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL
    Chandra, Subhash
    Abbas, Syed
    Liang, Yongshun
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (02)
  • [47] Nonlinear fractional Caputo-Langevin equation with nonlocal Riemann-Liouville fractional integral conditions
    Yukunthorn, Weera
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [48] RIEMANN-LIOUVILLE FRACTIONAL FUNDAMENTAL THEOREM OF CALCULUS AND RIEMANN-LIOUVILLE FRACTIONAL POLYA TYPE INTEGRAL INEQUALITY AND ITS EXTENSION TO CHOQUET INTEGRAL SETTING
    Anastassiou, George A.
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) : 1423 - 1433
  • [49] Inverse Problems for the Loaded Parabolic-Hyperbolic Equation Involves Riemann-Liouville Operator
    Abdullaev, O. Kh.
    Yuldashev, T. K.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (03) : 1080 - 1090
  • [50] Riemann-Liouville fractional integral of non-affine fractal interpolation function and its fractional operator
    Priyanka, T. M. C.
    Gowrisankar, A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3789 - 3805