Solvability of a mixed problem with the integral gluing condition for a loaded equation with the Riemann-Liouville fractional operator

被引:3
|
作者
Baltaeva, Umida [1 ,2 ]
Babajanova, Yulduz [3 ]
Agarwal, Praveen [4 ,5 ]
Ozdemir, Necati [6 ]
机构
[1] Khorezm Mamun Acad, Khorezm, Uzbekistan
[2] Urgench State Univ, Dept Appl Math & Math Phys, Urgench, Uzbekistan
[3] Urgench State Univ, Dept Math Engn, Urgench, Uzbekistan
[4] Anand Int Coll Engn, Dept Math, Appl Nonlinear Sci Lab, Jaipur 303012, India
[5] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman, U Arab Emirates
[6] Balikesir Univ, Dept Math, Balikesir, Turkiye
关键词
Mixed type equation; Parabolic-hyperbolic type; Boundary -value problem; Integral condition; Riemann-Liouville fractional derivatives; BOUNDARY-VALUE PROBLEM;
D O I
10.1016/j.cam.2023.115066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study boundary value problems with an integral gluing condition for a loaded equation of parabolic-hyperbolic type. The existence and uniqueness of the problem under study are proved based on the unique solvability obtained from integral and loaded integral equations.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Fractional Langevin equation and Riemann-Liouville fractional derivative
    Kwok Sau Fa
    The European Physical Journal E, 2007, 24 : 139 - 143
  • [32] Fractional langevin equation and riemann-liouville fractional derivative
    Fa, Kwok Sau
    EUROPEAN PHYSICAL JOURNAL E, 2007, 24 (02): : 139 - 143
  • [33] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19
  • [34] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19
  • [35] ON A CERTAIN EXTENSION OF THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATOR
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    Tomovski, Zivorad
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (02): : 507 - 522
  • [36] The Riemann-liouville operator to generate some integral inequalities
    El Farissi, Abdallah
    Dahmani, Zoubir
    Bouraoui, Yasmina Khati
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2011, 14 (04) : 445 - 452
  • [37] On a Generic Fractional Derivative Associated with the Riemann-Liouville Fractional Integral
    Luchko, Yuri
    AXIOMS, 2024, 13 (09)
  • [38] FRACTAL DIMENSIONS FOR THE MIXED (κ, s)-RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OF BIVARIATE FUNCTIONS
    Wang, B. Q.
    Xiao, W.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (03)
  • [39] THE HARNACK INEQUALITY FOR THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATION OPERATOR
    Zacher, Rico
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (01): : 35 - 43
  • [40] Image Edge Detection by Global Thresholding Using Riemann-Liouville Fractional Integral Operator
    Gaur S.
    Khan A.M.
    Suthar D.L.
    Bora A.
    Mathematical Problems in Engineering, 2024, 2024