Refined probability distribution module for fine-grained visual categorization

被引:1
|
作者
Zhao, Peipei [1 ]
Miao, Qiguang [1 ]
Li, Hongsheng [2 ]
Liu, Ruyi [1 ]
Quan, Yining [1 ]
Song, Jianfeng [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian, Shaanxi, Peoples R China
[2] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金;
关键词
Image -to -image similarity scores; Batch random walk; Deep learning; Fine-grained visual categorization; PERSON REIDENTIFICATION; NETWORK;
D O I
10.1016/j.neucom.2022.10.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fine-grained visual categorization is an important task in computer vision. Prior works on fine-grained visual categorization have paid much attention to addressing intra-class variation and inter-class similar-ity. However, they rarely study that task from the perspective of probability distribution. In this paper, we propose a novel refined probability distribution module based on deep convolutional neural network. Our module computes the probability of an image by fully utilizing the similarity information between images. Firstly, we use deep neural networks to obtain the initial probability distribution and extract fea-tures. Then, we build a network whose inputs are features for calculating image-to-image similarity scores. Finally, our module refines the initial probability distribution based on an effective batch random walk operation with similarity scores. Our module can be plugged into many deep convolutional neural networks. Experimental results show that our approach outperforms state-of-the-art methods on the CUB-200-2011, FGVC-Aircraft and Stanford Cars datasets respectively.CO 2022 Published by Elsevier B.V.
引用
收藏
页码:533 / 544
页数:12
相关论文
共 50 条
  • [11] Hierarchical Part Matching for Fine-Grained Visual Categorization
    Xie, Lingxi
    Tian, Qi
    Hong, Richang
    Yan, Shuicheng
    Zhang, Bo
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1641 - 1648
  • [12] Fine-Grained Visual Categorization of Fasteners in Overhaul Processes
    Taheritanjani, Sajjad
    Haladjian, Juan
    Bruegge, Bernd
    [J]. CONFERENCE PROCEEDINGS OF 2019 5TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2019, : 241 - 248
  • [13] ProtoSimi: label correction for fine-grained visual categorization
    Jialiang Shen
    Yu Yao
    Shaoli Huang
    Zhiyong Wang
    Jing Zhang
    Ruxing Wang
    Jun Yu
    Tongliang Liu
    [J]. Machine Learning, 2024, 113 : 1903 - 1920
  • [14] Fine-Grained Categorization by Alignments
    Gavves, E.
    Fernando, B.
    Snoek, C. G. M.
    Smeulders, A. W. M.
    Tuytelaars, T.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1713 - 1720
  • [15] Cross-X Learning for Fine-Grained Visual Categorization
    Luo, Wei
    Yang, Xitong
    Mo, Xianjie
    Lu, Yuheng
    Davis, Larry S.
    Li, Jun
    Yang, Jian
    Lim, Ser-Nam
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8241 - 8250
  • [16] Fine-grained Visual Categorization with 2D-Warping
    Hanselmann, Harald
    Ney, Hermann
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 608 - 613
  • [17] Recombining Vision Transformer Architecture for Fine-Grained Visual Categorization
    Deng, Xuran
    Liu, Chuanbin
    Lu, Zhiying
    [J]. MULTIMEDIA MODELING, MMM 2023, PT II, 2023, 13834 : 127 - 138
  • [18] A survey of fine-grained visual categorization based on deep learning
    XIE Yuxiang
    GONG Quanzhi
    LUAN Xidao
    YAN Jie
    ZHANG Jiahui
    [J]. Journal of Systems Engineering and Electronics, 2024, 35 (06) - 1356
  • [19] Multiresolution Discriminative Mixup Network for Fine-Grained Visual Categorization
    Xu, Kunran
    Lai, Rui
    Gu, Lin
    Li, Yishi
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (07) : 3488 - 3500
  • [20] Category attention transfer for efficient fine-grained visual categorization
    Liao, Qiyu
    Wang, Dadong
    Xu, Min
    [J]. PATTERN RECOGNITION LETTERS, 2022, 153 : 10 - 15