ProtoSimi: label correction for fine-grained visual categorization

被引:0
|
作者
Jialiang Shen
Yu Yao
Shaoli Huang
Zhiyong Wang
Jing Zhang
Ruxing Wang
Jun Yu
Tongliang Liu
机构
[1] The University of Sydney,School of Computer Science
[2] Yunnan University,School of Software
[3] University of Science and Technology of China,Department of Automation
来源
Machine Learning | 2024年 / 113卷
关键词
Label noise; Fine-grained visual categorization; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Deep models trained by using clean data have achieved tremendous success in fine-grained image classification. Yet, they generally suffer from significant performance degradation when encountering noisy labels. Existing approaches to handle label noise, though proved to be effective for generic object recognition, usually fail on fine-grained data. The reason is that, on fine-grained data, the category difference is subtle and the training sample size is small. Then deep models could easily overfit the noisy labels. To improve the robustness of deep models on noisy data for fine-grained visual categorization, in this paper, we propose a novel learning framework named ProtoSimi. Our method employs an adaptive label correction strategy, ensuring effective learning on limited data. Specifically, our approach considers the criteria of exploring the effectiveness of both global class-prototype and part class-prototype similarities in identifying and correcting labels of samples. We evaluate our method on three standard benchmarks of fine-grained recognition. Experimental results show that our method outperforms the existing label noisy methods by a large margin. In ablation studies, we also verify that our method is non-sensitive to hyper-parameters selection and can be integrated with other FGVC methods to increase the generalization performance.
引用
收藏
页码:1903 / 1920
页数:17
相关论文
共 50 条
  • [1] ProtoSimi: label correction for fine-grained visual categorization
    Shen, Jialiang
    Yao, Yu
    Huang, Shaoli
    Wang, Zhiyong
    Zhang, Jing
    Wang, Ruxing
    Yu, Jun
    Liu, Tongliang
    [J]. MACHINE LEARNING, 2024, 113 (04) : 1903 - 1920
  • [2] Coarse Label Refined Knowledge Reasoning for Fine-Grained Visual Categorization
    Zhao, Xiangyu
    Peng, Yuxin
    [J]. INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, 2018, 11266 : 349 - 359
  • [3] Feathers Dataset for Fine-Grained Visual Categorization
    Belko, Alina
    Dobratulin, Konstantin
    Kuznetsov, Andrey
    [J]. THIRTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2020), 2021, 11605
  • [4] Coarse-to-Fine Description for Fine-Grained Visual Categorization
    Yao, Hantao
    Zhang, Shiliang
    Zhang, Yongdong
    Li, Jintao
    Tian, Qi
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (10) : 4858 - 4872
  • [5] FINE-GRAINED VISUAL CATEGORIZATION WITH FINE-TUNED SEGMENTATION
    Li, Lingyun
    Guo, Yanqing
    Xie, Lingxi
    Kong, Xiangwei
    Tian, Qi
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2025 - 2029
  • [6] Adaptive Triplet Model for Fine-Grained Visual Categorization
    Liang, Jingyun
    Guo, Jinlin
    Guo, Yanming
    Lao, Songyang
    [J]. IEEE ACCESS, 2018, 6 : 76776 - 76786
  • [7] Squeezed Bilinear Pooling for Fine-Grained Visual Categorization
    Liao, Qiyu
    Wang, Dadong
    Holewa, Hamish
    Xu, Min
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 728 - 732
  • [8] Alignment Enhancement Network for Fine-grained Visual Categorization
    Hu, Yutao
    Liu, Xuhui
    Zhang, Baochang
    Han, Jungong
    Cao, Xianbin
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (01)
  • [9] Hierarchical Part Matching for Fine-Grained Visual Categorization
    Xie, Lingxi
    Tian, Qi
    Hong, Richang
    Yan, Shuicheng
    Zhang, Bo
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1641 - 1648
  • [10] Discriminative Suprasphere Embedding for Fine-Grained Visual Categorization
    Ye, Shuo
    Peng, Qinmu
    Sun, Wenju
    Xu, Jiamiao
    Wang, Yu
    You, Xinge
    Cheung, Yiu-Ming
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 5092 - 5102