Refined probability distribution module for fine-grained visual categorization

被引:2
|
作者
Zhao, Peipei [1 ]
Miao, Qiguang [1 ]
Li, Hongsheng [2 ]
Liu, Ruyi [1 ]
Quan, Yining [1 ]
Song, Jianfeng [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian, Shaanxi, Peoples R China
[2] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
基金
中国博士后科学基金; 国家重点研发计划;
关键词
Image -to -image similarity scores; Batch random walk; Deep learning; Fine-grained visual categorization; PERSON REIDENTIFICATION;
D O I
10.1016/j.neucom.2022.10.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fine-grained visual categorization is an important task in computer vision. Prior works on fine-grained visual categorization have paid much attention to addressing intra-class variation and inter-class similar-ity. However, they rarely study that task from the perspective of probability distribution. In this paper, we propose a novel refined probability distribution module based on deep convolutional neural network. Our module computes the probability of an image by fully utilizing the similarity information between images. Firstly, we use deep neural networks to obtain the initial probability distribution and extract fea-tures. Then, we build a network whose inputs are features for calculating image-to-image similarity scores. Finally, our module refines the initial probability distribution based on an effective batch random walk operation with similarity scores. Our module can be plugged into many deep convolutional neural networks. Experimental results show that our approach outperforms state-of-the-art methods on the CUB-200-2011, FGVC-Aircraft and Stanford Cars datasets respectively.CO 2022 Published by Elsevier B.V.
引用
收藏
页码:533 / 544
页数:12
相关论文
共 50 条
  • [31] Filtration and Distillation: Enhancing Region Attention for Fine-Grained Visual Categorization
    Liu, Chuanbin
    Xie, Hongtao
    Zha, Zheng-Jun
    Ma, Lingfeng
    Yu, Lingyun
    Zhang, Yongdong
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 11555 - 11562
  • [32] Multiscale attention dynamic aware network for fine-grained visual categorization
    Ou, Jichu
    Li, Wanyi
    Huang, Jingmin
    Huang, Xiaojie
    Xie, Xuan
    ELECTRONICS LETTERS, 2023, 59 (01)
  • [33] Attention Convolutional Binary Neural Tree for Fine-Grained Visual Categorization
    Ji, Ruyi
    Wen, Longyin
    Zhang, Libo
    Du, Dawei
    Wu, Yanjun
    Zhao, Chen
    Liu, Xianglong
    Huang, Feiyue
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 10465 - 10474
  • [34] Multistage attention region supplement transformer for fine-grained visual categorization
    Mei, Aokun
    Huo, Hua
    Xu, Jiaxin
    Xu, Ningya
    VISUAL COMPUTER, 2025, 41 (03): : 1873 - 1889
  • [35] Classification-Specific Parts for Improving Fine-Grained Visual Categorization
    Korsch, Dimitri
    Bodesheim, Paul
    Denzler, Joachim
    PATTERN RECOGNITION, DAGM GCPR 2019, 2019, 11824 : 62 - 75
  • [36] Fine-Grained Visual Categorization by Localizing Object Parts With Single Image
    Zheng, Xiangtao
    Qi, Lei
    Ren, Yutao
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 1187 - 1199
  • [37] Exploring part-aware segmentation for fine-grained visual categorization
    Pang, Cheng
    Yao, Hongxun
    Sun, Xiaoshuai
    Zhao, Sicheng
    Zhang, Yanhao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (23) : 30291 - 30310
  • [38] IU-MODULE: INTERSECTION AND UNION MODULE FOR FINE-GRAINED VISUAL CLASSIFICATION
    Zheng, Yixiao
    Chang, Dongliang
    Xie, Jiyang
    Ma, Zhanyu
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [39] A benchmark dataset and approach for fine-grained visual categorization in complex scenes
    Zhang, Xiang
    Zhang, Keran
    Zhao, Wanqing
    Luo, Hangzai
    Zhong, Sheng
    Tang, Lei
    Peng, Jinye
    Fan, Jianping
    DIGITAL SIGNAL PROCESSING, 2023, 137
  • [40] PFNet: a novel part fusion network for fine-grained visual categorization
    Jingyun Liang
    Jinlin Guo
    Yanming Guo
    Songyang Lao
    Multimedia Tools and Applications, 2020, 79 : 33397 - 33416