Characterisation of Planar Brownian Multiplicative Chaos

被引:4
|
作者
Jego, Antoine [1 ]
机构
[1] Univ Vienna, Vienna, Austria
基金
英国工程与自然科学研究理事会;
关键词
RANDOM-WALKS; LATE POINTS; MOTION; TIME;
D O I
10.1007/s00220-022-04570-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We characterise the multiplicative chaos measure M associated to planar Brownian motion introduced in Bass et al. (Ann Probab 22(2):566-625, 1994), Aidekon et al. (Ann. Probab. 48(4), 1785-1825, 2020) and Jego (Ann Probab 48(4):1597-1643, 2020) by showing that it is the only random Borel measure satisfying a list of natural properties. These properties only serve to fix the average value of the measure and to express a spatial Markov property. As a consequence of our characterisation, we establish the scaling limit of the set of thick points of planar simple random walk, stopped at the first exit time of a domain, by showing the weak convergence towards M of the point measure associated to the thick points. In particular, we obtain the convergence of the appropriately normalised number of thick points of random walk to a nondegenerate random variable. The normalising constant is different from that of the Gaussian free field, as conjectured in Jego (Electron J Probab 25:39, 2020). These results cover the entire subcritical regime. A key new idea for this characterisation is to introduce measures describing the intersection between different independent Brownian trajectories and how they interact to create thick points.
引用
收藏
页码:971 / 1019
页数:49
相关论文
共 50 条
  • [21] Critical Gaussian multiplicative chaos revisited
    Lacoin, Hubert
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (04): : 2328 - 2351
  • [22] Gaussian Multiplicative Chaos and KPZ Duality
    Julien Barral
    Xiong Jin
    Rémi Rhodes
    Vincent Vargas
    Communications in Mathematical Physics, 2013, 323 : 451 - 485
  • [23] Magnetic fields from multiplicative chaos
    Durrive, Jean-Baptiste
    Lesaffre, Pierre
    Ferriere, Katia
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 496 (03) : 3015 - 3034
  • [24] Critical Gaussian Multiplicative Chaos: a Review
    Powell, Ellen
    MARKOV PROCESSES AND RELATED FIELDS, 2021, 27 (04) : 557 - 606
  • [25] Multiplicative linear search for a brownian target motion
    Mohamed, Abd El-Moneim Anwar
    Kassem, Mohamed Abd El-Hady
    El-Hadidy, Mohamed Abd Allah
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (09) : 4127 - 4139
  • [26] Combining Multifractal Additive and Multiplicative Chaos
    Julien Barral
    Stéphane Seuret
    Communications in Mathematical Physics, 2005, 257 : 473 - 497
  • [27] SECULAR COEFFICIENTS AND THE HOLOMORPHIC MULTIPLICATIVE CHAOS
    Najnudel, Joseph
    Paquette, Elliot
    Simm, Nick
    ANNALS OF PROBABILITY, 2023, 51 (04): : 1193 - 1248
  • [28] The density of imaginary multiplicative chaos is positive
    Aru, Juhan
    Jego, Antoine
    Junnila, Janne
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2024, 29
  • [29] Some topics in the theory of multiplicative chaos
    Fan, AH
    FRACTAL GEOMETRY AND STOCHASTICS III, 2004, 57 : 119 - 134
  • [30] Combining multifractal additive and multiplicative chaos
    Barral, J
    Seuret, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 257 (02) : 473 - 497