Characterisation of Planar Brownian Multiplicative Chaos

被引:4
|
作者
Jego, Antoine [1 ]
机构
[1] Univ Vienna, Vienna, Austria
基金
英国工程与自然科学研究理事会;
关键词
RANDOM-WALKS; LATE POINTS; MOTION; TIME;
D O I
10.1007/s00220-022-04570-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We characterise the multiplicative chaos measure M associated to planar Brownian motion introduced in Bass et al. (Ann Probab 22(2):566-625, 1994), Aidekon et al. (Ann. Probab. 48(4), 1785-1825, 2020) and Jego (Ann Probab 48(4):1597-1643, 2020) by showing that it is the only random Borel measure satisfying a list of natural properties. These properties only serve to fix the average value of the measure and to express a spatial Markov property. As a consequence of our characterisation, we establish the scaling limit of the set of thick points of planar simple random walk, stopped at the first exit time of a domain, by showing the weak convergence towards M of the point measure associated to the thick points. In particular, we obtain the convergence of the appropriately normalised number of thick points of random walk to a nondegenerate random variable. The normalising constant is different from that of the Gaussian free field, as conjectured in Jego (Electron J Probab 25:39, 2020). These results cover the entire subcritical regime. A key new idea for this characterisation is to introduce measures describing the intersection between different independent Brownian trajectories and how they interact to create thick points.
引用
收藏
页码:971 / 1019
页数:49
相关论文
共 50 条
  • [41] AREAS OF PLANAR BROWNIAN CURVES
    DUPLANTIER, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (15): : 3033 - 3048
  • [42] Microscopic chaos from brownian motion?
    Peter Grassberger
    Thomas Schreiber
    Nature, 1999, 401 : 875 - 876
  • [43] Microscopic chaos from brownian motion?
    C. P. Dettmann
    E. G. D. Cohen
    H. van Beijeren
    Nature, 1999, 401 : 875 - 875
  • [44] Brownian Path Generation and Polynomial Chaos
    Fox, Jamie
    Okten, Giray
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2021, 12 (02): : 724 - 743
  • [45] Chaos, dissipation and quantal Brownian motion
    Cohen, D
    NEW DIRECTIONS IN QUANTUM CHAOS, 2000, 143 : 65 - 99
  • [46] Distance Measures for Linear Systems with Multiplicative and Inverse Multiplicative Uncertainty Characterisation
    Engelken, Soenke
    Lanzon, Alexander
    Patra, Sourav
    Papageorgiou, George
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2336 - 2341
  • [47] Gaussian multiplicative chaos for the sine-process
    Bufetov, A. I.
    RUSSIAN MATHEMATICAL SURVEYS, 2023, 78 (06) : 1155 - 1157
  • [48] Gaussian Multiplicative Chaos for Symmetric Isotropic Matrices
    Laurent Chevillard
    Rémi Rhodes
    Vincent Vargas
    Journal of Statistical Physics, 2013, 150 : 678 - 703
  • [49] The classical compact groups and Gaussian multiplicative chaos
    Forkel, Johannes
    Keating, Jonathan P.
    NONLINEARITY, 2021, 34 (09) : 6050 - 6119
  • [50] The Brown measure of a family of free multiplicative Brownian motions
    Hall, Brian C.
    Ho, Ching-Wei
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 186 (3-4) : 1081 - 1166