The density of imaginary multiplicative chaos is positive

被引:1
|
作者
Aru, Juhan [1 ]
Jego, Antoine [1 ]
Junnila, Janne [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[2] Univ Helsinki, Helsinki, Finland
基金
瑞士国家科学基金会;
关键词
Gaussian multiplicative chaos; log-correlated fields; Malliavin calculus; density;
D O I
10.1214/24-ECP630
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a log-correlated Gaussian field Gamma and its associated imaginary multiplicative chaos : e i beta Gamma : where beta is a real parameter. In [3], we showed that for any nonzero test function f , the law offf f f : e i beta Gamma : possesses a smooth density with respect to Lebesgue measure on C. In this note, we show that this density is strictly positive everywhere on C. Our simple and direct strategy could be useful for studying other functionals on Gaussian spaces.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Density of imaginary multiplicative chaos via Malliavin calculus
    Juhan Aru
    Antoine Jego
    Janne Junnila
    Probability Theory and Related Fields, 2022, 184 : 749 - 803
  • [2] Density of imaginary multiplicative chaos via Malliavin calculus
    Aru, Juhan
    Jego, Antoine
    Junnila, Janne
    PROBABILITY THEORY AND RELATED FIELDS, 2022, 184 (3-4) : 749 - 803
  • [3] Reconstructing the base field from imaginary multiplicative chaos
    Aru, Juhan
    Junnila, Janne
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (03) : 861 - 870
  • [4] IMAGINARY MULTIPLICATIVE CHAOS: MOMENTS, REGULARITY AND CONNECTIONS TO THE ISING MODEL
    Junnila, Janne
    Saksman, Eero
    Webb, Christian
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (05): : 2099 - 2164
  • [5] Brownian Loops, Layering Fields and Imaginary Gaussian Multiplicative Chaos
    Federico Camia
    Alberto Gandolfi
    Giovanni Peccati
    Tulasi Ram Reddy
    Communications in Mathematical Physics, 2021, 381 : 889 - 945
  • [6] Brownian Loops, Layering Fields and Imaginary Gaussian Multiplicative Chaos
    Camia, Federico
    Gandolfi, Alberto
    Peccati, Giovanni
    Reddy, Tulasi Ram
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (03) : 889 - 945
  • [7] CHAOS - DETECTING DENSITY DEPENDENCE IN IMAGINARY WORLDS
    MAY, RM
    NATURE, 1989, 338 (6210) : 16 - 17
  • [8] MULTIPLICATIVE CHAOS
    KAHANE, JP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (06): : 329 - 332
  • [9] POSITIVE UPPER DENSITY POINTS AND CHAOS
    尹建东
    周作领
    ActaMathematicaScientia, 2012, 32 (04) : 1408 - 1414
  • [10] POSITIVE UPPER DENSITY POINTS AND CHAOS
    Yin Jiandong
    Zhou Zouling
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (04) : 1408 - 1414