Density of imaginary multiplicative chaos via Malliavin calculus

被引:5
|
作者
Aru, Juhan [1 ]
Jego, Antoine [1 ]
Junnila, Janne [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
关键词
CONVERGENCE; FIELDS;
D O I
10.1007/s00440-022-01135-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the imaginary Gaussian multiplicative chaos, i.e. the complex Wick exponential mu(beta ):=: e(i beta Gamma(x)) : for a log-correlated Gaussian field Gamma in d >= 1 dimensions. We prove a basic density result, showing that for any nonzero continuous test function f, the complex-valued random variable mu(beta)(f) has a smooth density w.r.t. the Lebesgue measure on C. As a corollary, we deduce that the negative moments of imaginary chaos on the unit circle do not correspond to the analytic continuation of the Fyodorov-Bouchaud formula, even when well-defined. Somewhat surprisingly, basic density results are not easy to prove for imaginary chaos and one of the main contributions of the article is introducing Malliavin calculus to the study of (complex) multiplicative chaos. To apply Malliavin calculus to imaginary chaos, we develop a new decomposition theorem for non-degenerate log-correlated fields via a small detour to operator theory, and obtain small ball probabilities for Sobolev norms of imaginary chaos.
引用
收藏
页码:749 / 803
页数:55
相关论文
共 50 条
  • [1] Density of imaginary multiplicative chaos via Malliavin calculus
    Juhan Aru
    Antoine Jego
    Janne Junnila
    Probability Theory and Related Fields, 2022, 184 : 749 - 803
  • [2] The density of imaginary multiplicative chaos is positive
    Aru, Juhan
    Jego, Antoine
    Junnila, Janne
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2024, 29
  • [4] Chaos expansions and Malliavin calculus for Levy processes
    Sole, Josep Lluis
    Utzet, Frederic
    Vives, Josep
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 2 : 595 - +
  • [5] Bound for an Approximation of Invariant Density of Diffusions via Density Formula in Malliavin Calculus
    Kim, Yoon-Tae
    Park, Hyun-Suk
    MATHEMATICS, 2023, 11 (10)
  • [6] Density formula and concentration inequalities with Malliavin calculus
    Nourdin, Ivan
    Viens, Frederi G.
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 2287 - 2309
  • [7] The Stochastic Wave Equation with Multiplicative Fractional Noise: A Malliavin Calculus Approach
    Balan, Raluca M.
    POTENTIAL ANALYSIS, 2012, 36 (01) : 1 - 34
  • [8] The Stochastic Wave Equation with Multiplicative Fractional Noise: A Malliavin Calculus Approach
    Raluca M. Balan
    Potential Analysis, 2012, 36 : 1 - 34
  • [9] Concentration inequalities via Malliavin calculus with applications
    Treilhard, John
    Mansouri, Abdol-Reza
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 1 - 14
  • [10] THE MALLIAVIN CALCULUS
    ZAKAI, M
    ACTA APPLICANDAE MATHEMATICAE, 1985, 3 (02) : 175 - 207