Density of imaginary multiplicative chaos via Malliavin calculus

被引:5
|
作者
Aru, Juhan [1 ]
Jego, Antoine [1 ]
Junnila, Janne [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
关键词
CONVERGENCE; FIELDS;
D O I
10.1007/s00440-022-01135-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the imaginary Gaussian multiplicative chaos, i.e. the complex Wick exponential mu(beta ):=: e(i beta Gamma(x)) : for a log-correlated Gaussian field Gamma in d >= 1 dimensions. We prove a basic density result, showing that for any nonzero continuous test function f, the complex-valued random variable mu(beta)(f) has a smooth density w.r.t. the Lebesgue measure on C. As a corollary, we deduce that the negative moments of imaginary chaos on the unit circle do not correspond to the analytic continuation of the Fyodorov-Bouchaud formula, even when well-defined. Somewhat surprisingly, basic density results are not easy to prove for imaginary chaos and one of the main contributions of the article is introducing Malliavin calculus to the study of (complex) multiplicative chaos. To apply Malliavin calculus to imaginary chaos, we develop a new decomposition theorem for non-degenerate log-correlated fields via a small detour to operator theory, and obtain small ball probabilities for Sobolev norms of imaginary chaos.
引用
收藏
页码:749 / 803
页数:55
相关论文
共 50 条
  • [31] Density Formula in Malliavin Calculus by Using Stein's Method and Diffusions
    Park, Hyun-Suk
    MATHEMATICS, 2025, 13 (02)
  • [32] MALLIAVIN CALCULUS AND REGULARITY OF THE DENSITY OF AN INVARIANT PROBABILITY FOR A MARKOV-CHAIN
    COQUIO, A
    GRAVEREAUX, JB
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1992, 28 (04): : 431 - 478
  • [33] Levy Laplacians in Hida Calculus and Malliavin Calculus
    Volkov, B. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 301 (01) : 11 - 24
  • [34] Statistical Inference and Malliavin Calculus
    Corcuera, Jose M.
    Kohatsu-Higa, Arturo
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VI, 2011, 63 : 59 - +
  • [35] Malliavin calculus and martingale expansion
    Yoshida, N
    BULLETIN DES SCIENCES MATHEMATIQUES, 2001, 125 (6-7): : 431 - 456
  • [36] Malliavin calculus in a binomial framework
    Cohen, Samuel N.
    Elliott, Robert J.
    Siu, Tak Kuen
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2018, 34 (06) : 774 - 781
  • [37] Perturbation analysis and Malliavin calculus
    Decreusefond, L
    ANNALS OF APPLIED PROBABILITY, 1998, 8 (02): : 496 - 523
  • [38] MARTINGALE REPRESENTATION AND THE MALLIAVIN CALCULUS
    ELLIOTT, RJ
    KOHLMANN, M
    APPLIED MATHEMATICS AND OPTIMIZATION, 1989, 20 (01): : 105 - 112
  • [39] Differentiable measures and the malliavin calculus
    Bogachev V.I.
    Journal of Mathematical Sciences, 1997, 87 (4) : 3577 - 3731
  • [40] CHAOS - DETECTING DENSITY DEPENDENCE IN IMAGINARY WORLDS
    MAY, RM
    NATURE, 1989, 338 (6210) : 16 - 17