The derivative of the log-likelihood function, known as score function, plays a central role in parametric statistical inference. It can be used to study the asymptotic behavior of likelihood and pseudo-likelihood estimators. For instance, one can deduce the local asymptotic normality property which leads to various asymptotic properties of these estimators. In this article we apply Malliavin Calculus to obtain the score function as a conditional expectation. We then show, through different examples, how this idea can be useful for asymptotic inference of stochastic processes. In particular, we consider situations where there are jumps driving the data process.
机构:
Russian Acad Sci, Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
Bauman Moscow State Tech Univ, Vtoraya Baumanskaya Ul 5-1, Moscow 105005, RussiaRussian Acad Sci, Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
机构:
Univ Nacl Autonoma Mexico, Inst Matemat, Catedra Conacyt, Oaxaca De Juarez, Oaxaca, MexicoUniv Nacl Autonoma Mexico, Inst Matemat, Catedra Conacyt, Oaxaca De Juarez, Oaxaca, Mexico
Delgado-Vences, Francisco
Pavon-Espanol, Jose Julian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Fac Ciencias, Ciudad De Mexico, MexicoUniv Nacl Autonoma Mexico, Inst Matemat, Catedra Conacyt, Oaxaca De Juarez, Oaxaca, Mexico