The density of imaginary multiplicative chaos is positive

被引:1
|
作者
Aru, Juhan [1 ]
Jego, Antoine [1 ]
Junnila, Janne [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[2] Univ Helsinki, Helsinki, Finland
基金
瑞士国家科学基金会;
关键词
Gaussian multiplicative chaos; log-correlated fields; Malliavin calculus; density;
D O I
10.1214/24-ECP630
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a log-correlated Gaussian field Gamma and its associated imaginary multiplicative chaos : e i beta Gamma : where beta is a real parameter. In [3], we showed that for any nonzero test function f , the law offf f f : e i beta Gamma : possesses a smooth density with respect to Lebesgue measure on C. In this note, we show that this density is strictly positive everywhere on C. Our simple and direct strategy could be useful for studying other functionals on Gaussian spaces.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Combining multifractal additive and multiplicative chaos
    Barral, J
    Seuret, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 257 (02) : 473 - 497
  • [32] Gaussian multiplicative chaos and applications: A review
    Rhodes, Remi
    Vargas, Vincent
    PROBABILITY SURVEYS, 2014, 11 : 315 - 392
  • [33] Gaussian Multiplicative Chaos and KPZ Duality
    Barral, Julien
    Jin, Xiong
    Rhodes, Remi
    Vargas, Vincent
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 323 (02) : 451 - 485
  • [34] An elementary approach to Gaussian multiplicative chaos
    Berestycki, Nathanael
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
  • [35] Characterisation of Planar Brownian Multiplicative Chaos
    Jego, Antoine
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 399 (02) : 971 - 1019
  • [36] MULTIPLICATIVE NOISE AND HOMOCLINIC CROSSING - CHAOS
    SCHIEVE, WC
    BULSARA, AR
    PHYSICAL REVIEW A, 1990, 41 (02): : 1172 - 1174
  • [37] Gaussian multiplicative chaos for the sine-process
    Bufetov, A. I.
    RUSSIAN MATHEMATICAL SURVEYS, 2023, 78 (06) : 1155 - 1157
  • [38] Gaussian Multiplicative Chaos for Symmetric Isotropic Matrices
    Laurent Chevillard
    Rémi Rhodes
    Vincent Vargas
    Journal of Statistical Physics, 2013, 150 : 678 - 703
  • [39] PLANAR BROWNIAN MOTION AND GAUSSIAN MULTIPLICATIVE CHAOS
    Jego, Antoine
    ANNALS OF PROBABILITY, 2020, 48 (04): : 1597 - 1643
  • [40] The classical compact groups and Gaussian multiplicative chaos
    Forkel, Johannes
    Keating, Jonathan P.
    NONLINEARITY, 2021, 34 (09) : 6050 - 6119