Characterisation of Planar Brownian Multiplicative Chaos

被引:4
|
作者
Jego, Antoine [1 ]
机构
[1] Univ Vienna, Vienna, Austria
基金
英国工程与自然科学研究理事会;
关键词
RANDOM-WALKS; LATE POINTS; MOTION; TIME;
D O I
10.1007/s00220-022-04570-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We characterise the multiplicative chaos measure M associated to planar Brownian motion introduced in Bass et al. (Ann Probab 22(2):566-625, 1994), Aidekon et al. (Ann. Probab. 48(4), 1785-1825, 2020) and Jego (Ann Probab 48(4):1597-1643, 2020) by showing that it is the only random Borel measure satisfying a list of natural properties. These properties only serve to fix the average value of the measure and to express a spatial Markov property. As a consequence of our characterisation, we establish the scaling limit of the set of thick points of planar simple random walk, stopped at the first exit time of a domain, by showing the weak convergence towards M of the point measure associated to the thick points. In particular, we obtain the convergence of the appropriately normalised number of thick points of random walk to a nondegenerate random variable. The normalising constant is different from that of the Gaussian free field, as conjectured in Jego (Electron J Probab 25:39, 2020). These results cover the entire subcritical regime. A key new idea for this characterisation is to introduce measures describing the intersection between different independent Brownian trajectories and how they interact to create thick points.
引用
收藏
页码:971 / 1019
页数:49
相关论文
共 50 条
  • [1] Characterisation of Planar Brownian Multiplicative Chaos
    Antoine Jego
    Communications in Mathematical Physics, 2023, 399 : 971 - 1019
  • [2] PLANAR BROWNIAN MOTION AND GAUSSIAN MULTIPLICATIVE CHAOS
    Jego, Antoine
    ANNALS OF PROBABILITY, 2020, 48 (04): : 1597 - 1643
  • [3] Critical Brownian multiplicative chaos
    Antoine Jego
    Probability Theory and Related Fields, 2021, 180 : 495 - 552
  • [4] Critical Brownian multiplicative chaos
    Jego, Antoine
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 180 (1-2) : 495 - 552
  • [5] Multiplicative chaos of the Brownian loop soup
    Aidekon, Elie
    Berestycki, Nathanael
    Jego, Antoine
    Lupu, Titus
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 126 (04) : 1254 - 1393
  • [6] THE MULTIPLICATIVE CHAOS OF H=0 FRACTIONAL BROWNIAN FIELDS
    Hager, Paul
    Neuman, Eyal
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (03): : 2139 - 2179
  • [7] Brownian Loops, Layering Fields and Imaginary Gaussian Multiplicative Chaos
    Federico Camia
    Alberto Gandolfi
    Giovanni Peccati
    Tulasi Ram Reddy
    Communications in Mathematical Physics, 2021, 381 : 889 - 945
  • [8] Brownian Loops, Layering Fields and Imaginary Gaussian Multiplicative Chaos
    Camia, Federico
    Gandolfi, Alberto
    Peccati, Giovanni
    Reddy, Tulasi Ram
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (03) : 889 - 945
  • [9] MULTIPLICATIVE CHAOS
    KAHANE, JP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (06): : 329 - 332
  • [10] Chaos in Multiplicative Systems
    Aniszewska, Dorota
    Rybaczuk, Marek
    CHAOTIC SYSTEMS: THEORY AND APPLICATIONS, 2010, : 9 - 16