The density of imaginary multiplicative chaos is positive

被引:1
|
作者
Aru, Juhan [1 ]
Jego, Antoine [1 ]
Junnila, Janne [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[2] Univ Helsinki, Helsinki, Finland
基金
瑞士国家科学基金会;
关键词
Gaussian multiplicative chaos; log-correlated fields; Malliavin calculus; density;
D O I
10.1214/24-ECP630
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a log-correlated Gaussian field Gamma and its associated imaginary multiplicative chaos : e i beta Gamma : where beta is a real parameter. In [3], we showed that for any nonzero test function f , the law offf f f : e i beta Gamma : possesses a smooth density with respect to Lebesgue measure on C. In this note, we show that this density is strictly positive everywhere on C. Our simple and direct strategy could be useful for studying other functionals on Gaussian spaces.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Critical Brownian multiplicative chaos
    Jego, Antoine
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 180 (1-2) : 495 - 552
  • [22] Critical Gaussian multiplicative chaos revisited
    Lacoin, Hubert
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (04): : 2328 - 2351
  • [23] Characterisation of Planar Brownian Multiplicative Chaos
    Antoine Jego
    Communications in Mathematical Physics, 2023, 399 : 971 - 1019
  • [24] Gaussian Multiplicative Chaos and KPZ Duality
    Julien Barral
    Xiong Jin
    Rémi Rhodes
    Vincent Vargas
    Communications in Mathematical Physics, 2013, 323 : 451 - 485
  • [25] Magnetic fields from multiplicative chaos
    Durrive, Jean-Baptiste
    Lesaffre, Pierre
    Ferriere, Katia
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 496 (03) : 3015 - 3034
  • [26] Critical Gaussian Multiplicative Chaos: a Review
    Powell, Ellen
    MARKOV PROCESSES AND RELATED FIELDS, 2021, 27 (04) : 557 - 606
  • [27] Multiplicative chaos of the Brownian loop soup
    Aidekon, Elie
    Berestycki, Nathanael
    Jego, Antoine
    Lupu, Titus
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 126 (04) : 1254 - 1393
  • [28] Combining Multifractal Additive and Multiplicative Chaos
    Julien Barral
    Stéphane Seuret
    Communications in Mathematical Physics, 2005, 257 : 473 - 497
  • [29] SECULAR COEFFICIENTS AND THE HOLOMORPHIC MULTIPLICATIVE CHAOS
    Najnudel, Joseph
    Paquette, Elliot
    Simm, Nick
    ANNALS OF PROBABILITY, 2023, 51 (04): : 1193 - 1248
  • [30] Some topics in the theory of multiplicative chaos
    Fan, AH
    FRACTAL GEOMETRY AND STOCHASTICS III, 2004, 57 : 119 - 134