?-Conformally Flat LP-Kenmotsu Manifolds and Ricci-Yamabe Solitons

被引:8
|
作者
Haseeb, Abdul [1 ]
Bilal, Mohd [2 ]
Chaubey, Sudhakar K. [3 ]
Ahmadini, Abdullah Ali H. [1 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, Jazan 45142, Saudi Arabia
[2] Umm Al Qura Univ, Fac Appl Sci, Dept Math Sci, Mecca 21955, Saudi Arabia
[3] Univ Technol & Appl Sci, Dept IT, Sect Math, Shinas 324, Oman
关键词
Lorentzian manifolds; Ricci-Yamabe solitons; gradient Ricci-Yamabe solitons; perfect fluid spacetime; Einstein manifolds; 3-MANIFOLDS;
D O I
10.3390/math11010212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we characterize m-dimensional zeta-conformally flat LP-Kenmotsu manifolds (briefly, (LPK)(m)) equipped with the Ricci-Yamabe solitons (RYS) and gradient Ricci-Yamabe solitons (GRYS). It is proven that the scalar curvature r of an (LPK)(m) admitting an RYS satisfies the Poisson equation delta r=4(m-1)/delta{beta(m-1)+rho}+2(m-3)r - 4m(m-1)(m-2), where rho,delta(&NOTEQUexpressionL; 0) is an element of R. In this sequel, the condition for which the scalar curvature of an (LPK)(m) admitting an RYS holds the Laplace equation is established. We also give an affirmative answer for the existence of a GRYS on an (LPK)(m). Finally, a non-trivial example of an LP-Kenmotsu manifold (LPK) of dimension four is constructed to verify some of our results.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A study of *-Ricci-Yamabe solitons on LP-Kenmotsu manifolds
    Haseeb, Abdul
    Mofarreh, Fatemah
    Chaubey, Sudhakar Kumar
    Prasad, Rajendra
    AIMS MATHEMATICS, 2024, 9 (08): : 22532 - 22546
  • [2] A Note on LP-Kenmotsu Manifolds Admitting Conformal Ricci-Yamabe Solitons
    Ahmad, Mobin
    Gazala, Maha Atif
    Al-Shabrawi, Maha Atif
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [3] Ricci-Yamabe Solitons and Gradient Ricci-Yamabe Solitons on Kenmotsu 3-manifolds
    Sardar, Arpan
    Sarkar, Avijit
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 813 - 822
  • [4] On Kenmotsu manifolds admitting η-Ricci-Yamabe solitons
    Yoldas, Halil Ibrahim
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (12)
  • [5] Almost Ricci-Yamabe solitons on Almost Kenmotsu manifolds
    Khatri, Mohan
    Singh, Jay Prakash
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (08)
  • [6] Geometry of Indefinite Kenmotsu Manifolds as *η-Ricci-Yamabe Solitons
    Haseeb, Abdul
    Bilal, Mohd
    Chaubey, Sudhakar K.
    Khan, Mohammad Nazrul Islam
    AXIOMS, 2022, 11 (09)
  • [7] LP-Kenmotsu Manifolds Admitting η-Ricci Solitons and Spacetime
    Li, Yanlin
    Haseeb, Abdul
    Ali, Musavvir
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [8] On Almost Kenmotsu Manifolds admitting Conformal Ricci-Yamabe Solitons
    Singh, Jay Prakash
    Zosangzuala, Chhakchhuak
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43 : 23 - 23
  • [9] Almost Ricci-Yamabe Solitons in f-Kenmotsu Manifolds
    Shivaprasanna, G. S.
    Rajendra, R.
    Reddy, P. Siva Kota
    Somashekhara, G.
    Pavithra, M.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [10] Kenmotsu 3-manifold admitting gradient Ricci-Yamabe solitons and * - η- Ricci-Yamabe solitons
    Prasad, Rajendra
    Kumar, Vinay
    FILOMAT, 2024, 38 (13) : 4569 - 4583