Data-driven cranial suture growth model enables predicting phenotypes of craniosynostosis

被引:3
|
作者
Liu, Jiawei [1 ]
Froelicher, Joseph H. [1 ]
French, Brooke [2 ,3 ]
Linguraru, Marius George [4 ,5 ,6 ]
Porras, Antonio R. [1 ,2 ,3 ,7 ,8 ,9 ]
机构
[1] Univ Colorado, Colorado Sch Publ Hlth, Dept Biostat & Informat, Anschutz Med Campus, Aurora, CO 80045 USA
[2] Childrens Hosp Colorado, Dept Pediat Plast & Reconstruct Surg, Aurora, CO 80045 USA
[3] Univ Colorado, Sch Med, Dept Surg, Anschutz Med Campus, Aurora, CO 80045 USA
[4] Childrens Natl Hosp, Sheikh Zayed Inst Pediat Surg Innovat, Washington, DC 20010 USA
[5] George Washington Univ, Dept Radiol, Sch Med & Hlth Sci, Washington, DC 20052 USA
[6] George Washington Univ, Sch Med & Hlth Sci, Dept Pediat, Washington, DC 20052 USA
[7] Childrens Hosp Colorado, Dept Pediat Neurosurg, Aurora, CO 80045 USA
[8] Univ Colorado, Sch Med, Dept Pediat, Anschutz Med Campus, Aurora, CO 80045 USA
[9] Univ Colorado, Sch Med, Dept Biomed Informat, Anschutz Med Campus, Aurora, CO 80045 USA
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
关键词
INTRACRANIAL VOLUME; REGISTRATION; SHAPE; VALIDATION; MANAGEMENT;
D O I
10.1038/s41598-023-47622-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present the first data-driven pediatric model that explains cranial sutural growth in the pediatric population. We segmented the cranial bones in the neurocranium from the cross-sectional CT images of 2068 normative subjects (age 0-10 years), and we used a 2D manifold-based cranial representation to establish local anatomical correspondences between subjects guided by the location of the cranial sutures. We designed a diffeomorphic spatiotemporal model of cranial bone development as a function of local sutural growth rates, and we inferred its parameters statistically from our cross-sectional dataset. We used the constructed model to predict growth for 51 independent normative patients who had longitudinal images. Moreover, we used our model to simulate the phenotypes of single suture craniosynostosis, which we compared to the observations from 212 patients. We also evaluated the accuracy predicting personalized cranial growth for 10 patients with craniosynostosis who had pre-surgical longitudinal images. Unlike existing statistical and simulation methods, our model was inferred from real image observations, explains cranial bone expansion and displacement as a consequence of sutural growth and it can simulate craniosynostosis. This pediatric cranial suture growth model constitutes a necessary tool to study abnormal development in the presence of cranial suture pathology.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Predicting heterogeneous ice nucleation with a data-driven approach
    Fitzner, Martin
    Pedevilla, Philipp
    Michaelides, Angelos
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [42] Multiple data-driven approach for predicting landslide deformation
    Li, S. H.
    Wu, L. Z.
    Chen, J. J.
    Huang, R. Q.
    LANDSLIDES, 2020, 17 (03) : 709 - 718
  • [43] Predicting the evolution of Escherichia coli by a data-driven approach
    Xiaokang Wang
    Violeta Zorraquino
    Minseung Kim
    Athanasios Tsoukalas
    Ilias Tagkopoulos
    Nature Communications, 9
  • [44] Predicting heterogeneous ice nucleation with a data-driven approach
    Martin Fitzner
    Philipp Pedevilla
    Angelos Michaelides
    Nature Communications, 11
  • [45] Predicting ecosystem responses by data-driven reciprocal modelling
    Schneider, Florian
    Poeplau, Christopher
    Don, Axel
    GLOBAL CHANGE BIOLOGY, 2021, 27 (21) : 5670 - 5679
  • [46] Multiple data-driven approach for predicting landslide deformation
    S. H. Li
    L. Z. Wu
    J. J. Chen
    R.Q. Huang
    Landslides, 2020, 17 : 709 - 718
  • [47] Predicting vessel service time: A data-driven approach
    Yan, Ran
    Chu, Zhong
    Wu, Lingxiao
    Wang, Shuaian
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [48] A Data-Driven Unified Framework for Predicting Citation Dynamics
    Gogoglou, Antonia
    Manolopoulos, Yannis
    IEEE TRANSACTIONS ON BIG DATA, 2020, 6 (04) : 727 - 740
  • [49] Predicting the Popularity of YouTube Videos: A Data-Driven Approach
    Aljamea, Alaa
    Zeng, Xiao-Jun
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2023, 2024, 1453 : 625 - 639
  • [50] A Hybrid Data-Driven Model for Predicting NOx Concentration in a Cement Clinker Calcination System
    Xue, Shanshan
    Li, Fanjun
    Cheng, Shaoqi
    Feng, Jiayue
    Shen, Xinyu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74