Data-driven cranial suture growth model enables predicting phenotypes of craniosynostosis

被引:3
|
作者
Liu, Jiawei [1 ]
Froelicher, Joseph H. [1 ]
French, Brooke [2 ,3 ]
Linguraru, Marius George [4 ,5 ,6 ]
Porras, Antonio R. [1 ,2 ,3 ,7 ,8 ,9 ]
机构
[1] Univ Colorado, Colorado Sch Publ Hlth, Dept Biostat & Informat, Anschutz Med Campus, Aurora, CO 80045 USA
[2] Childrens Hosp Colorado, Dept Pediat Plast & Reconstruct Surg, Aurora, CO 80045 USA
[3] Univ Colorado, Sch Med, Dept Surg, Anschutz Med Campus, Aurora, CO 80045 USA
[4] Childrens Natl Hosp, Sheikh Zayed Inst Pediat Surg Innovat, Washington, DC 20010 USA
[5] George Washington Univ, Dept Radiol, Sch Med & Hlth Sci, Washington, DC 20052 USA
[6] George Washington Univ, Sch Med & Hlth Sci, Dept Pediat, Washington, DC 20052 USA
[7] Childrens Hosp Colorado, Dept Pediat Neurosurg, Aurora, CO 80045 USA
[8] Univ Colorado, Sch Med, Dept Pediat, Anschutz Med Campus, Aurora, CO 80045 USA
[9] Univ Colorado, Sch Med, Dept Biomed Informat, Anschutz Med Campus, Aurora, CO 80045 USA
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
关键词
INTRACRANIAL VOLUME; REGISTRATION; SHAPE; VALIDATION; MANAGEMENT;
D O I
10.1038/s41598-023-47622-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present the first data-driven pediatric model that explains cranial sutural growth in the pediatric population. We segmented the cranial bones in the neurocranium from the cross-sectional CT images of 2068 normative subjects (age 0-10 years), and we used a 2D manifold-based cranial representation to establish local anatomical correspondences between subjects guided by the location of the cranial sutures. We designed a diffeomorphic spatiotemporal model of cranial bone development as a function of local sutural growth rates, and we inferred its parameters statistically from our cross-sectional dataset. We used the constructed model to predict growth for 51 independent normative patients who had longitudinal images. Moreover, we used our model to simulate the phenotypes of single suture craniosynostosis, which we compared to the observations from 212 patients. We also evaluated the accuracy predicting personalized cranial growth for 10 patients with craniosynostosis who had pre-surgical longitudinal images. Unlike existing statistical and simulation methods, our model was inferred from real image observations, explains cranial bone expansion and displacement as a consequence of sutural growth and it can simulate craniosynostosis. This pediatric cranial suture growth model constitutes a necessary tool to study abnormal development in the presence of cranial suture pathology.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Data-driven outbreak forecasting with a simple nonlinear growth model
    Lega, Joceline
    Brown, Heidi E.
    EPIDEMICS, 2016, 17 : 19 - 26
  • [22] Predicting Cognitive Phenotypes in De Novo Parkinson's disease (PD): An fMRI Data-driven Approach
    De Bartolo, M. I.
    Ojha, A.
    Leodori, G.
    Piervincenzi, C.
    Vivacqua, G.
    Pietracupa, S.
    Costanzo, M.
    D'Antonio, F.
    Barbetti, S.
    Margiotta, R.
    Bruno, G.
    Conte, A.
    Berardelli, A.
    Fabbrini, G.
    Pantano, P.
    Belvisi, D.
    MOVEMENT DISORDERS, 2024, 39 : S111 - S112
  • [23] Data-driven approaches for predicting wax deposition
    Ahmadi, Mohammadali
    ENERGY, 2023, 265
  • [24] A data-driven hysteresis model
    Ikhouane, Faycal
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (09):
  • [25] A data-driven reflectance model
    Matusik, W
    Pfister, H
    Brand, M
    McMillan, L
    ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03): : 759 - 769
  • [26] A Data-Driven Probabilistic Trajectory Model for Predicting and Simulating Terminal Airspace Operations
    Rocha Murca, Mayara Conde
    de Oliveira, McWillian
    2020 AIAA/IEEE 39TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC) PROCEEDINGS, 2020,
  • [27] Predicting Anion Redox in Secondary Battery Cathode Materials with a Data-Driven Model
    Grundish, Nicholas S.
    Ransom, Brandi
    Sendek, Austin D.
    Pellouchoud, Lenson A.
    Li, Yutao
    Reed, Evan J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (40): : 16844 - 16853
  • [28] Virtual Energy Auditing: A Data-Driven Model for Predicting EnerGuide Rating System
    Bahiraei, Farid
    Ashouri, Araz
    Shillinglaw, Scott
    McLellan, Christopher
    ASHRAE TRANSACTIONS 2022, VOL 128, PT 2, 2022, 128 : 563 - 572
  • [29] Data-Driven and Mechanistic Hybrid Model for Predicting Oxygen Consumption in BOF Steelmaking
    Li, Peng
    Zhan, Dongping
    Wang, Bo
    Wang, Mingxin
    Yang, Naihui
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2025,
  • [30] Hybrid data-driven model for predicting the shear strength of discontinuous rock materials
    Lei, Daxing
    Zhang, Yaoping
    Lu, Zhigang
    Liu, Bo
    Lin, Hang
    MATERIALS TODAY COMMUNICATIONS, 2024, 41