Data-driven cranial suture growth model enables predicting phenotypes of craniosynostosis

被引:3
|
作者
Liu, Jiawei [1 ]
Froelicher, Joseph H. [1 ]
French, Brooke [2 ,3 ]
Linguraru, Marius George [4 ,5 ,6 ]
Porras, Antonio R. [1 ,2 ,3 ,7 ,8 ,9 ]
机构
[1] Univ Colorado, Colorado Sch Publ Hlth, Dept Biostat & Informat, Anschutz Med Campus, Aurora, CO 80045 USA
[2] Childrens Hosp Colorado, Dept Pediat Plast & Reconstruct Surg, Aurora, CO 80045 USA
[3] Univ Colorado, Sch Med, Dept Surg, Anschutz Med Campus, Aurora, CO 80045 USA
[4] Childrens Natl Hosp, Sheikh Zayed Inst Pediat Surg Innovat, Washington, DC 20010 USA
[5] George Washington Univ, Dept Radiol, Sch Med & Hlth Sci, Washington, DC 20052 USA
[6] George Washington Univ, Sch Med & Hlth Sci, Dept Pediat, Washington, DC 20052 USA
[7] Childrens Hosp Colorado, Dept Pediat Neurosurg, Aurora, CO 80045 USA
[8] Univ Colorado, Sch Med, Dept Pediat, Anschutz Med Campus, Aurora, CO 80045 USA
[9] Univ Colorado, Sch Med, Dept Biomed Informat, Anschutz Med Campus, Aurora, CO 80045 USA
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
关键词
INTRACRANIAL VOLUME; REGISTRATION; SHAPE; VALIDATION; MANAGEMENT;
D O I
10.1038/s41598-023-47622-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present the first data-driven pediatric model that explains cranial sutural growth in the pediatric population. We segmented the cranial bones in the neurocranium from the cross-sectional CT images of 2068 normative subjects (age 0-10 years), and we used a 2D manifold-based cranial representation to establish local anatomical correspondences between subjects guided by the location of the cranial sutures. We designed a diffeomorphic spatiotemporal model of cranial bone development as a function of local sutural growth rates, and we inferred its parameters statistically from our cross-sectional dataset. We used the constructed model to predict growth for 51 independent normative patients who had longitudinal images. Moreover, we used our model to simulate the phenotypes of single suture craniosynostosis, which we compared to the observations from 212 patients. We also evaluated the accuracy predicting personalized cranial growth for 10 patients with craniosynostosis who had pre-surgical longitudinal images. Unlike existing statistical and simulation methods, our model was inferred from real image observations, explains cranial bone expansion and displacement as a consequence of sutural growth and it can simulate craniosynostosis. This pediatric cranial suture growth model constitutes a necessary tool to study abnormal development in the presence of cranial suture pathology.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Data-driven Normative Reference of Pediatric Cranial Bone Development
    Liu, Jiawei
    Elkhill, Connor
    LeBeau, Scott
    French, Brooke
    Lepore, Natasha
    Linguraru, Marius George
    Porras, Antonio R.
    PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN, 2022, 10 (08) : E4457
  • [32] Data-driven marketing for growth and profitability
    Grandhi, Balakrishna
    Patwa, Nitin
    Saleem, Kashaf
    EUROMED JOURNAL OF BUSINESS, 2021, 16 (04) : 381 - 398
  • [33] A bidirectional interface growth model for cranial interosseous suture morphogenesis
    Zollikofer, Christoph P. E.
    Weissmann, John David
    JOURNAL OF ANATOMY, 2011, 219 (02) : 100 - 114
  • [34] The optimal transport paradigm enables data compression in data-driven robust control
    Fabiani, Filippo
    Goulart, Paul J.
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 2412 - 2417
  • [35] Data-driven model for predicting the current cycle count of power batteries based on model stacking
    Dong, Jinxi
    Yu, Zhaosheng
    Zhang, Xikui
    Chen, Lixi
    Zou, Qihong
    Cai, Wolin
    Lin, Musong
    Ma, Xiaoqian
    JOURNAL OF ENERGY STORAGE, 2024, 75
  • [36] A Systematic Review of Asthma Phenotypes Derived by Data-Driven Methods
    Cunha, Francisco
    Amaral, Rita
    Jacinto, Tiago
    Sousa-Pinto, Bernardo
    Fonseca, Joao A.
    DIAGNOSTICS, 2021, 11 (04)
  • [37] Hybrid model-driven and data-driven method for predicting concrete creep considering uncertainty quantification
    Yang, Yiming
    Zhou, Chengkun
    Peng, Jianxin
    Cai, Chunsheng
    Tang, Huang
    Zhang, Jianren
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2024, 18 (10): : 1524 - 1539
  • [38] A model of fake data in data-driven analysis
    Li, Xiaofan
    Whinston, Andrew B.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [39] Success parameters of data-driven business models the industrial internet of things enables companies to design data-driven business models
    Berndt S.
    Geismar L.
    ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2021, 116 (05): : 289 - 293
  • [40] Predicting the evolution of Escherichia coli by a data-driven approach
    Wang, Xiaokang
    Zorraquino, Violeta
    Kim, Minseung
    Tsoukalas, Athanasios
    Tagkopoulos, Ilias
    NATURE COMMUNICATIONS, 2018, 9