Exponential bases for partitions of intervals

被引:3
|
作者
Pfander, Goetz [1 ]
Revay, Shauna [2 ]
Walnut, David [2 ]
机构
[1] Kathol Univ Eichstatt, Eichstatt, Germany
[2] George Mason Univ, Fairfax, VA 22030 USA
关键词
Exponential systems; Riesz bases of exponentials; Partitions of intervals; Beatty-Frankel sequences; Avdonin maps; Weyl-Khinchin equidistribution theorem; Avdonin; 1/4-theorem; Basis extraction; Bandlimited functions; Sampling of bandlimited functions; INTERPOLATING-SEQUENCES; LIMITED FUNCTIONS;
D O I
10.1016/j.acha.2023.101607
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a partition of [0, 1] into intervals ������1, ... , ������������we prove the existence of a partition of Z into Lambda 1, ... ,Lambda ������such that the complex exponential functions with frequencies in Lambda ������form a Riesz basis for ������2(������������), and furthermore, that for any ������ subset of {1, 2, ... , ������}, the exponential functions with frequencies in & Union;������is an element of ������Lambda ������form a Riesz basis for ������2(������)for any interval ������with length |������|= n-ary sumation ������is an element of ������|������������|. The construction extends to infinite partitions of [0, 1], but with size limitations on the subsets ������ subset of Z; it combines the ergodic properties of subsequences of Z known as Beatty-Fraenkel sequences with a theorem of Avdonin on exponential Riesz bases.
引用
收藏
页数:22
相关论文
共 50 条